In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Computer engineering and information technology‎, ‎Payame Noor University‎, Tehran, ‎Iran.

2 Department of Statistics‎, ‎Payame Noor University‎, Tehran, ‎Iran‎.

10.30473/coam.2025.73974.1295

Abstract

Breast cancer is one of the most prevalent cancers among women and remains a leading cause of cancer-related mortality‎. ‎Mammography is the primary imaging modality for the early detection of breast tumors‎. ‎Providing timely and highly accurate diagnoses is a top priority for physicians and healthcare providers in the management of critical illnesses‎. ‎This paper presents a Medical Decision Support System (MDSS) that utilizes Yager’s rule of combination to classify and diagnose breast cancer patients by integrating information from multiple data sources‎. ‎Medical text reports (MTR) and key feature vectors extracted from electronic health records (EHR) were reduced using Principal Component Analysis (PCA) and then classified using Convolutional Neural Networks (CNN)‎, ‎Multi-Layer Perceptrons (MLP)‎, ‎and Support Vector Machines (SVM)‎. ‎Medical images were preprocessed and classified using a U-Net model‎. ‎A novel decision fusion algorithm‎, ‎called weighted Yager‎, ‎was introduced to determine the Breast Imaging-Reporting and Data System (BI-RADS) categories‎, ‎taking into account the accuracy of each class in each classifier as evidence‎. ‎The performance of the proposed system was evaluated based on standard metrics including accuracy‎, ‎sensitivity‎, ‎specificity‎, ‎positive predictive value (PPV)‎, ‎negative predictive value (NPV)‎, ‎and F1-score‎. ‎The proposed system achieved the highest accuracy of 96.23\%‎, ‎outperforming individual classifiers (CNN‎: ‎86.37%‎, ‎MLP‎: ‎92.11%‎, ‎SVM‎: ‎87.92%‎, ‎U-Net‎: ‎92.97%‎, ‎and Yager‎: ‎93.49%)‎. ‎The weighted Yager fusion method yielded the best performance with an accuracy of 96.23%‎, ‎sensitivity of 98.80%‎, ‎specificity of 85.90%‎, ‎PPV of 86.21%‎, ‎NPV of 97.82%‎, ‎and F1-score of 85.87%‎. ‎These findings demonstrate that integrating decisions from multiple classifiers significantly improves diagnostic accuracy and robustness‎.

Highlights

Highlights

  • Developed a novel Medical Decision Support System (MDSS) framework utilizing Yager’s rule of combination to improve breast cancer diagnosis and classification accuracy.
  • Integrated heterogeneous data sources, including Combined Medical Text Reports (MTR), Electronic Health Records (EHR), and medical imaging, to enhance decision-making robustness.
  • Employed Principal Component Analysis (PCA) for effective feature extraction from textual and structured data, followed by classification using CNN, MLP, and SVM models.
  • Applied U-Net architecture for preprocessing and accurate classification of medical images.
  • Developed a weighted Yager decision fusion algorithm that dynamically assigns importance to classifiers based on their accuracy, enhancing BI-RADS categorization.
  • Achieved state-of-the-art performance metrics, including accuracy, sensitivity, specificity, PPV, NPV, and F1-score, outperforming individual classifiers and traditional fusion methods.
  • Demonstrated a maximum overall classification accuracy of 96.23%, surpassing individual classifiers (CNN, MLP, SVM, U-Net) and the original Yager approach.
  • Confirmed that combining multiple classifier outputs significantly enhances the reliability and precision of breast cancer diagnostics in clinical decision support systems.

Keywords

Main Subjects

[1] Ahmed, S. (2023). “A software framework for predicting the maize yield using modified multilayer perceptron”, Sustainability, 15(4), 3017, doi: https://doi.org/10.3390/su15043017.
[2] Akram, M., Shahzadi, G. (2021). “A hybrid decision-making model under q-rung orthopair fuzzy Yager aggregation operators”, Granular Computing, 6(4), 763-777, doi: https://doi.org/10.1007/s41066-020-00229-z.
[3] Alesheykh, R. (2016). “Comparative analysis of machine learning algorithms with optimization purposes”, Control and Optimization in Applied Mathematics, 1(2), 63-75.
[4] Alhasani, A.T., Alkattan, H., Subhi, A.A., El-Kenawy, El.S.M., Eid, M.M. (2023). “A comparative analysis of methods for detecting and diagnosing breast cancer based on data mining”, Journal of Artificial Intelligence and Metaheuristics, 4(2), 08-17, doi: https://doi.org/10.54216/JAIM.040201.
[5] Balasubramaniam, S., Velmurugan, Y., Jaganathan, D., Dhanasekaran, S.J.D. (2023). “A modified LeNet CNN for breast cancer diagnosis in ultrasound images”, Diagnostics, 13(17), 2746, doi: https://doi.org/10.3390/diagnostics13172746.
[6] Batista, G.E., Prati, R.C., Monard, M.C. (2004). “A study of the behavior of several methods for balancing machine learning training data”, ACM SIGKDD Explorations Newsletter, 6(1), 20-29, doi: https://doi.org/10.1145/1007730.1007735.
[7] Boyer, B., Canale, S., Arfi-Rouche, J., Monzani, Q., Khaled, W., Balleyguier, C. (2013). “Variability and errors when applying the BIRADS mammography classification”, European Journal of Radiology, 82(3), 388-397, doi: https://doi.org/10.1016/j.ejrad.2012.02.005.
[8] Borkowski, K., Rossi, C., Ciritsis, A., Marcon, M., Hejduk, P., Stieb, S., Boss, A., Berger, N. (2020). “Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach”, Medicine, 99(29): p e21243, doi: https://doi.org/10.1097/MD.0000000000021243.
[9] Boroumandzadeh, M., Parvinnia, E., Boostani, R., Sefidbakht, S. (2021). “A decision support system framework based on text mining and decision fusion techniques to classify breast cancer patients”, Control and Optimization in Applied Mathematics, 6(1), 11-29, doi: https://doi.org/10.30473/coam.2021.60533.1175.
[10] Boumaraf, S., Liu, X., Ferkous, C., Ma, X. (2020). “A new computer-aided diagnosis system with modified genetic feature selection for BI-RADS classification of breast masses in mammograms”, BioMed Research International, 2020, doi: https://doi.org/10.1155/2020/7695207.
[11] Bozkurt, S., Gimenez, F., Burnside, E.S., Gulkesen, K.H., Rubin, D.L. (2016). “Using automatically extracted information from mammography reports for decision-support”, Journal of Biomedical Informatics, 62, 224-231, doi: https://doi.org/10.1016/j.jbi.2016.07.001.
[12] Carlsson, C., Brunelli, M., Mezei, J. (2012). “Decision making with a fuzzy ontology”, Soft Computing, 16,  1143-1152, doi: https://doi.org/10.1007/s00500-011-0789-x.
[13] Castro, S.M., Tseytlin, E., Medvedeva, O., Mitchell, K., Visweswaran, Sh., Bekhuis, T., Jacobson, R.S. (2017). “Automated annotation and classification of BI-RADS assessment from radiology reports”, Journal of Biomedical Informatics, 69, 177-187, doi: https://doi.org/10.1016/j.jbi.2017.04.011.
[14] Chang, C.-C., Lin, C.-J. (2011). “LIBSVM: A library for support vector machines”, ACM Transactions on Interactive Intelligent Systems, 2(3), 27, doi: https://doi.org/10.1145/1961189.1961199.
[15] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P. (2002). “Smote: Synthetic minority over-sampling technique”, Journal of Artificial Intelligence Research, 16, 321-357, doi: https://doi.org/10.1613/jair.953.
[16] Cochran, W.G. (1977). “Sampling techniques”, 3rd Edition, John Wiley & Sons, New York.
[17] Destrempes, F., Trop, I., Allard, L., Chayer, B., Garcia-Duitama, J., El Khoury, M., Lalonde, L., Cloutier, G. (2020). “Added value of quantitative ultrasound and machine learning in BI-RADS 4–5 assessment of solid breast lesions”, Ultrasound in Medicine & Biology, 46(2), 436-444, doi: https://doi.org/10.1016/j.ultrasmedbio.2019.10.024.
[18] Esmaeili, M., Ayyoubzadeh, S.M., Ahmadinejad, N., Ghazisaeedi, M., Nahvijou, A., Maghooli, K. (2020). “A decision support system for mammography reports interpretation”, Health Information Science and Systems, 8(1), 17, doi: https://doi.org/10.1007/s13755-020-00109-5.
[19] Fogliatto, F.S., Anzanello, M.J., Soares, F., Brust-Renck, P.G. (2019). “Decision support for breast cancer detection: Classification improvement through feature selection”, Cancer Control, 26(1), doi: https://doi.org/10.1177/1073274819876598.
[20] Gao, H., Aiello Bowles, E.J., Carrell, D., Buist, D.S.M. (2015). “Using natural language processing to extract mammographic findings”, Journal of Biomedical Informatics, 54, 77-84, doi: https://doi.org/10.1016/j.jbi.2015.01.010.
[21] Ghazalnaz Sharifonnasabi, F., Makhdoom, I. (2022). “Comparison of deep learning and machine learning algorithms to diagnose and predict breast cancer”, In: Ullah, A., Anwar, S., Calandra, D., Di Fuccio, R. (eds) Proceedings of International Conference on Information Technology and Applications, ICITA, Lecture Notes in Networks and Systems, 839. Springer, Singapore, doi: https://doi.org/10.1007/978-981-99-8324-7_4.
[22] Gupta, A., Banerjee, I., Rubin, D.L. (2018). “Automatic information extraction from unstructured mammography reports using distributed semantics”, Journal of Biomedical Informatics, 78, 78-86, doi: https://doi.org/10.1016/j.jbi.2017.12.016.
[23] Hossaina, Sh., Azamb, S., Montahac, S., Karimb, A., Sultana Chowaa, S., Mondola, Ch., Hasana, Md.Z., Jonkman, M. (2023). “Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model”, Heliyon, 9(11), e21369, doi: https://doi.org/10.1016/j.heliyon.2023.e21369.
[24] Jais, I.K.M., Ismail, A.R., Nisa, S.Q. (2019). “Adam optimization algorithm for wide and deep neural network”, Knowledge Engineering and Data Science, 2(1), 41-46, doi: https://doi.org/10.17977/um018v2i12019p41-46.

[25] Japkowicz, N., Stephen, S. (2002). “The class imbalance problem: A systematic study”, Intelligent Data Analysis, 6(5), 429-449, doi: https://doi.org/10.3233/IDA-2002-6504.
[26] Jesneck, J.L., Nolte, L.W., Baker, J.A., Floyd, C.E., Lo, J.Y. (2006). “Optimized approach to decision fusion of heterogeneous data for breast cancer diagnosis”, Medical Physics, 33(8), 2945-2954, doi: https://doi.org/10.1118/1.2208934.
[27] Jia, W., Sun, M., Lian, J., Hou, S. (2022). “Feature dimensionality reduction: a review”, Complex & Intelligent Systems, 8(3), 2663-2693, doi: https://doi.org/10.1007/s40747-021-00637-x.
[28] Li, B., Drozd, A., Guo, Y., Liu, T., Matsuoka, S., Du, X. (2019). “Scaling Word2Vec on big corpus”, Data Science and Engineering, 4(2), 157-175, doi: https://doi.org/10.1007/s41019-019-0096-6.
[29] Long, J., Shelhamer, E., Darrell, T. (2015). “Fully convolutional networks for semantic segmentation”, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA. 3431-3440, doi: https://doi.org/10.1109/CVPR.2015.7298965.
[30] Manalı, D., Demirel, H., Eleyan, A. (2024). “Deep learning based breast cancer detection using decision fusion”, Computers, 13(11), 294, doi: https://doi.org/10.3390/computers13110294.
[31] Nal Kalchbrenner, E.G., Blunsom, Ph. (2014). “A convolutional neural network for modelling sentences”, arXiv, doi: https://doi.org/10.48550/arXiv.1404.2188.
[32] Oh, S., Lee, M.S., Zhang, B.T. (2011). “Ensemble learning with active example selection for imbalanced biomedical data classification”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8(2), 316-325, doi: https://doi.org/10.1109/TCBB.2010.96.
[33] Patro, S.G.K., Kumar Sahu, K. (2015). “Normalization: A preprocessing stage”, arXiv, abs/1503.06462, doi: https://doi.org/10.48550/arXiv.1503.06462.
[34] Percha, B., Nassif, H., Lipson, J., Burnside, E., Rubin, D. (2012). “Automatic classification of mammography reports by BI-RADS breast tissue composition class”, Journal of the American Medical Informatics Association, 19(5), 913-916, doi: https://doi.org/10.1136/amiajnl-2011-000607.
[35] Punn, N.S., Agarwal, S. (2022). “Modality specific U-Net variants for biomedical image segmentation: A survey”, Artificial Intelligence Review, 55(7), 5845-5889, doi: https://doi.org/10.1007/s10462-022-10152-1.
[36] Ronneberger, O., Fischer, P., Brox, T. (2015). “U-Net: Convolutional networks for biomedical image segmentation”, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, 234-241, Springer International Publishing, doi: https://doi.org/10.1007/978-3-319-24574-4_28.
[37] Sefidbakht, S., Jalli, R., Izadpanah, E. (2015). “Adherence of academic radiologists in a non-English speaking imaging center to the BI-RADS standards of reporting breast MRI”, Journal of Clinical Imaging Science, 5, 66, doi: https://doi.org/10.4103/2156-7514.172970.
[38] Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A.J.C.C.J.C. (2023). “Cancer Statistics”, CA: A Cancer Journal for Clinicians, 73(1), 17-48, doi: https://doi.org/10.3322/caac.21763.
[39] Sippo, D.A., Warden, G.I., Andriole, K.P., Lacson, R., Ikuta, I., Birdwell, R.L., Khorasani, R. (2013). “Automated extraction of BI-RADS final assessment categories from radiology reports with natural language processing”, Journal of Digital Imaging, 26(5), 989-94, doi: https://doi.org/10.1007/s10278-013-9616-5.
[40] Tang, F., Adam, L., Si, B. (2018). “Group feature selection with multiclass support vector machine”, Neurocomputing, 317, 42-49, doi: https://doi.org/10.1016/j.neucom.2018.07.012.
[41] Xu, Q., Zhang, M., Gu, Z., Pan, G. (2019). “Overfitting remedy by sparsifying regularization on fully-connected layers of CNNs”, Neurocomputing, 328, 69-74, doi: https://doi.org/10.1016/j.neucom.2018.03.080.
[42] Yager, R.R. (1988). “On ordered weighted averaging aggregation operators in multicriteria decisionmaking”, IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190, doi: https://doi.org/10.1109/21.87068.
[43] Yan, R., Zhang, F., Rao, X., Lv, Zh., Li, J., Zhang, L., Liang, Sh., Li, Y., Ren, F., Zheng Ch., Liang, J. (2021). “Richer fusion network for breast cancer classification based on multimodal data”, BMC Medical Informatics and Decision Making, 21c, 1-15, doi: https://doi.org/10.1186/s12911-020-01340-6.
[44] Zahaby, M., Makhdoom, I. (2025). “Enhanced decision support system for breast cancer diagnosis with weighted ensemble learning methods”, Journal of Data Science and Modeling, 71-102, doi:  https://doi.org/10.22054/jdsm.2025.82414.1055.
[45] Zahaby, M., Shiri, M.E., Haj Seyed Javadi, H., Broumandzadeh, M. (2024). “Automatic classification of BI-RADS in mammography reports using data fusion”, Armaghane Danesh, 29(3), 365-85, doi: http://dx.doi.org/10.61186/armaghanj.29.3.365.
[46] Zahaby, M., Shiri, M.E., Haj Seyed Javadi, H., Boroumandzadeh, M. (2025). “Decision support system for improving breast cancer diagnosis using ensemble learning”, Computing and Informatics, 44(1), 124-150, doi: https://doi.org/10.31577/cai_2025_1_124.
[47] Zhang, X. et al. (2019). “Extracting comprehensive clinical information for breast cancer using deep learning methods”, International Journal of Medical Informatics, 132, 103985, doi: https://doi.org/10.1016/j.ijmedinf.2019.103985.