[1] Abouelatta, M.A., Omar, A.M., Ward, S. (2020). “Optimal grid size for precipitators using finite difference method based on full multi-grid method”, Electric Power Systems Research, 189, 106575, doi:https://doi.org/10.1016/j.epsr.2020.106575.
[2] Abu-Labdeh, R. (2023). “Monolithic multigrid methods for high-order discretization of time-dependent PDEs”, Doctoral dissertation, Memorial University of Newfoundland.
[3] Agrawal, O.P. (2004). “A general formulation and solution scheme for fractional optimal control problems”, Nonlinear Dynamics, 38, 323-337, doi:https://doi.org/10.1007/s11071-004-3764-6.
[4] Antil, H., Otárola, E. (2015). “A FEM for an optimal control problem of fractional powers of elliptic operators”, SIAM Journal on Control and Optimization, 53(6), 3432-3456, doi:https://doi.org/10.1137/140975061.
[5] Baleanu, D., Hajipour, M., & Jajarmi, A. (2024). “An accurate finite difference formula for the numerical solution of delay-dependent fractional optimal control problems”, International Journal of Optimization and Control: Theories & Applications, 14(3), 183-192, doi:https://doi.org/10.11121/ijocta.1478.
[6] Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D. (2019). “A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(8), 083127, doi:https://doi.org/10.1063/15096159.
[7] Banholzer, S., Mechelli, L., Volkwein, S. (2022). “A trust region reduced basis Pascoletti-Serafini algorithm for multi-objective PDE-constrained parameter optimization”, Mathematical and Computational Applications, 27(3), 39, doi:https://doi.org/10.3390/mca27030039.
[8] Banjai, L., Otárola, E. (2019). “A PDE approach to fractional diffusion: A space-fractional wave equation”, Numerische Mathematik, 143(1), 177-222, doi:https://doi.org/10.1007/s00211-019-01055-5.
[9] Benzi, M., Faccio, C. (2024). “Solving linear systems of the form by preconditioned iterative methods”, SIAM Journal on Scientific Computing, 46(2), S51-S70, doi:https://doi.org/10.1137/22M1505529.
[10] Betts, J.T. (2020). “Practical methods for optimal control using nonlinear programming”, Third Edition, SIAM Publication, doi:https://epubs.siam.org/doi/book/10.1137/1.9781611976199..
[11] Bhrawy, A.H. (2016). “A new spectral algorithm for time-space fractional partial differential equations with subdiffusion and superdiffusion”, in The Proceedings of the Romanian Academy – Series A: Mathematics, Physics, Technical Sciences, Information Science, 17(1), 39-47.
[12] Chen, X., Zhao, T., Zhang, M.Q., Chen, Q. (2019). “Entropy and entransy in convective heat transfer optimization: A review and perspective”, International Journal of Heat and Mass Transfer, 137, 1191-1220, doi:https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.017.
[13] Darehmiraki, M., Farahi, M.H., Effati, S. (2016). “A novel method to solve a class of distributed optimal control problems using Bezier curves”, Journal of Computational and Nonlinear Dynamics, 11(6), 061008, doi:https://doi.org/10.1115/1.4033755.
[14] Dohr, S., Kahle, C., Rogovs, S., Swierczynski, P. (2019). “A FEM for an optimal control problem subject to the fractional Laplace equation”, Calcolo, 56(4), 37, doi:https://doi.org/10.1007/s10092-019-0334-3.
[15] Ebrahimzadeh, A., Jajarmi, A., Baleanu, D. (2024). “Enhancing water pollution management through a comprehensive fractional modeling framework and optimal control techniques”, Journal of Nonlinear Mathematical Physics, 31, 48, doi: https://doi.org/10.1007/s44198-024-00215-y.
[16] Forsythe, G.E., Wasow, W.R. (1965). “Finite-Difference Methods for Partial Differential Equations”, 3, New York, Wiley.
[17] Garmanjani, G., Banei, S., Shanazari, K., Azari, Y. (2023). “An RBF-PUM finite difference scheme for forward–backward heat equation”, Computational and Applied Mathematics, 42(5), 231, doi:
https://doi.org/10.1007/s40314-023-02311-z.
[18] Güttel, S., Pearson, J.W. (2022). “A spectral-in-time Newton–Krylov method for nonlinear PDE-constrained optimization”, IMA Journal of Numerical Analysis, 42(2), 1478-1499, doi:https://doi.org/10.1093/imanum/drab011.
[19] Han, H.G., Zhang, L., Qiao, J. (2023). “Dynamic optimal control for wastewater treatment process under multiple operating conditions”, IEEE Transactions on Automation Science and Engineering, 20(3), 1907-1919, doi:10.1109/TASE.2022.3189048.
[20] Kadum, R.M., Mahmoudi, M. (2023). “Solving optimal control problems governed by a fractional differential equation using the Lagrange matrix operator”, International Journal of Nonlinear Analysis and Applications, 14(11), 299-308, doi: https://doi.org/10.22075/ijnaa.2023.22167.3981.
[21] Karumuri, S., Tripathy, R., Bilionis, I., Panchal, J. (2020). “Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks”, Journal of Computational Physics, 404(1), 109120, doi: https://doi.org/10.1016/j.jcp.2019.109120.
[22] Kırlı, E., Irk, D. (2023). “Efficient techniques for numerical solutions of Fisher’s equation using B-spline finite element methods”, Computational and Applied Mathematics, 42(4), 151, doi: https://doi.org/10.1007/s40314-023-02292-z.
[23] Li, B., Wang, T., Xie, X. (2020). “Analysis of a time-stepping discontinuous Galerkin method for fractional diffusion-wave equations with nonsmooth data”, Journal of Scientific Computing, 82(1), 4, doi: https://doi.org/10.1007/s10915-019-01118-7.
[24] Li, L., Fu, Y., Yu, K., Alwakeel, A.M., Alharbi, L.A. (2022). “Optimal trajectory UAV path design based on Bezier curves with multi-hop cluster selection in wireless networks”, Wireless Networks, 5021–5032, doi: https://doi.org/10.1007/s11276-022-03208-1.
[25] Liu, T., Yu, J., Zheng, Y., Liu, C., Yang, Y., Qi, Y. (2022). “A nonlinear multigrid method for the parameter identification problem of partial differential equations with constraints”, Mathematics, 10(16), 2938, doi:
https://doi.org/10.3390/math10162938.
[26] Mahmoudi, M., Shojaeizadeh, T., Darehmiraki, M. (2023). “Optimal control of time-fractional convection–diffusion–reaction problem employing compact integrated RBF method”, Mathematical Sciences, 17, 1-14, doi: https://doi.org/10.1007/s40096-021-00434-0.
[27] Martins, J.R.R.A. (2022). “Aerodynamic design optimization: Challenges and perspectives”, Computers & Fluids, 239, 105391, doi: https://doi.org/10.1016/j.compfluid.2022.105391.
[28] Mehandiratta, V., Mehra, M., Leugering, G. (2022). “Distributed optimal control problems driven by space-time fractional parabolic equations”, Control and Cybernetics, 51(2), 191-226, doi:
https://doi.org/10.2478/candc-2022-0014.
[29] Mohsin Mohammed Ali, M., Mahmoudi, M., Darehmiraki, M. (2024). “Applying radial basis functions and partition of unity for solving heating equations optimal control issues”, Mathematical Modelling of Engineering Problems, 11(12), 3402-3410, doi: https://doi.org/10.18280/mmep.111218.
[30] Mophou, G.M. (2011). “Optimal control of fractional diffusion equation”, Computers & Mathematics with Applications, 61(1), 68-78, doi: https://doi.org/10.1016/j.camwa.2010.10.030.
[31] Odibat, Z., Baleanu, D. (2019). “A linearization-based approach of homotopy analysis method for non-linear time-fractional parabolic PDEs”, Mathematical Methods in the Applied Sciences, 42(18), 7222-7232, doi: https://doi.org/10.1002/mma.5829.
[32] Petrocchi, A. (2024). “Optimal input design for large-scale inverse problems using PDE-constrained optimization”, Dissertation in Mathematics and Statistics, doi: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-zfbkfhn8asg91.
[33] Rizk-Allah, R.M., Hassanien, A.E., Marafie, A. (2024). “An improved equilibrium optimizer for numerical optimization: A case study on engineering design of the shell and tube heat exchanger”, Journal of Engineering Research, 12(2), 240-255, doi: https://doi.org/10.1016/j.jer.2023.08.019.
[34] Salehi, Y., Schiesser, W.E. (2018). “Introduction to fractional partial differential equations”, in Numerical Integration of Space Fractional Partial Differential Equations: Vol 1 - Introduction to Algorithms and Computer Coding in R, pp. 1-33. Cham: Springer International Publishing.
[35] Servadei, R., Valdinoci, E. (2014). “Weak and viscosity solutions of the fractional Laplace equation”, Publicacions Matemàtiques, 58(1): 133-154.
[36] Shah, F.A., Shah, K., Abdeljawad, T. (2025). “Numerical solution of two-dimensional time-fractional telegraph equation using Chebyshev spectral collocation method”, Partial Differential Equations in Applied Mathematics, 13, 101129, doi: https://doi.org/10.1016/j.padiff.2025.101129.
[37] Shi, Z., Gulgec, N.S., Berahas, A.S., Pakzad, S.N., Takáč, M. (2020). “Finite difference neural networks: Fast prediction of partial differential equations”, in 19th IEEE International Conference on Machine Learning and Applications, Miami, FL, USA, 130-135, doi:10.1109/ICMLA51294.2020.00029.
[38] Sinigaglia, C., Manzoni, A., Braghin, F. (2022). “Density control of large-scale particle swarm through PDE-constrained optimization”, IEEE Transactions on Robotics, 38(6), 3530-3549, doi:
http://dx.doi.org/10.1109/TRO.2022.3175404.
[39] Stanovov, V., Akhmedova, S., Semenkin, E. (2022). “NL-SHADE-LBC algorithm with linear parameter adaptation bias change for CEC 2022 numerical optimization”, in IEEE Congress on Evolutionary Computation, Padua, Italy, 01-08, doi:10.1109/CEC55065.2022.9870295.
[40] Stynes, M., O’Riordan, E., Gracia, J.L. (2017). “Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation”, SIAM Journal on Numerical Analysis, 55(2), 1057-1079, doi: https://doi.org/10.1137/16M1082329.
[41] Szabo, B., Babuska, I. (2021). “Finite element analysis: Method, verification and validation”, John Wiley & Sons Inc., doi:10.1002/9781119426479.
[42] Tarigan, A.J.M., Mardiningsih, M., Suwilo, S. (2022). “The search for alternative algorithms of the iteration method on a system of linear equations”, Sinkron: Jurnal dan Penelitian Teknik Informatika, 6(4), 2124-2424, doi: http://dx.doi.org/10.33395/sinkron.v7i4.11817.
[43] Tushar, J., Kumar, A., Kumar, S. (2022). “Variational and virtual discretizations of optimal control problems governed by diffusion problems”, Applied Mathematics & Optimization, 85(2), doi:
https://doi.org/10.1007/s00245-022-09872-1.
[44] Vabishchevich, P.N. (2020). “Approximation of a fractional power of an elliptic operator”, Numerical Linear Algebra with Applications, 27(3), e2287, doi: https://doi.org/10.1002/nla.2287.
[45] Yang, X., Li, S., Yuan, F., Dong, D., Huang, C., Wang, Z. (2023). “Optimizing multi-grid computation and parallelization on multi-cores”, in Proceedings of the 37th International Conference on Supercomputing, 227-239, doi: https://doi.org/10.1145/3577193.3593726.
[46] Ye, X., Xu, C. (2013). “A spectral method for optimal control problems governed by the time fractional diffusion equation with control constraints”, in Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012: Selected papers from the ICOSAHOM conference, June 25-29, 2012, Gammarth, Tunisia, 403-414. Cham: Springer International Publishing, doi: https://doi.org/10.1007/978-3-319-01601-6_33.
[47] Yuan, F., Yang, X., Li.S., Dong, D., Huang, C., Wang, Z. (2024). “Optimizing multi-grid preconditioned conjugate gradient method on multi-cores”, IEEE Transactions on Parallel and Distributed Systems, 35(5), 768-779, doi: http://dx.doi.org/10.1109/TPDS.2024.3372473.
[48] Zaky, M.A., Hendy, A.S., Macías-Díaz, J.E. (2020). “Semi-implicit Galerkin–Legendre spectral schemes for nonlinear time-space fractional diffusion–reaction equations with smooth and nonsmooth solutions”, Journal of Scientific Computing, 82, 1-27, doi: https://doi.org/10.1007/s10915-019-01117-8.