In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

Department of Applied Mathematics‎, ‎Azarbaijan Shahid Madani University‎, ‎Tabriz‎, ‎Iran.

10.30473/coam.2025.73893.1293

Abstract

Data Envelopment Analysis (DEA) is a well-established methodology for assessing the efficiency of decision-making units‎. ‎In complex systems comprising multiple interconnected subsections‎, ‎Network DEA provides a structured framework for efficiency evaluation‎. ‎However‎, ‎traditional DEA models rely on the assumption of deterministic data‎, ‎which inadequately reflects the inherent uncertainty present in real-world scenarios‎. ‎Traditional uncertainty-handling methods‎, ‎such as fuzzy logic‎, ‎stochastic models‎, ‎and interval-based techniques‎, ‎often fail when there is limited historical data and when expert opinions significantly influence the dataset‎. ‎To address these limitations‎, ‎this study introduces an uncertain network DEA model based on Liu’s uncertainty theory‎, ‎facilitating a more accurate assessment of efficiency under conditions of data imprecision‎. ‎The proposed model is designed for three interconnected subsections and is further extended into a generalized multi-stage framework‎, ‎allowing it to adapt to increasingly complex systems‎. ‎Its effectiveness and practical applicability are demonstrated through two numerical case studies in the banking industry‎, ‎highlighting its capacity to support decision-making under uncertainty‎. ‎The findings emphasize the model's potential to enhance efficiency evaluation methods‎, ‎particularly in environments characterized by limited and uncertain data‎.

Highlights

  • Introduces a novel network DEA framework integrating Liu’s uncertainty theory to effectively address data imprecision and inherent uncertainty.
  • Extends the conventional three-stage network DEA model into a flexible, multi-stage (p-stage) framework capable of modeling increasingly complex, interconnected systems under uncertainty.
  • Demonstrates the model’s robustness and practical utility through two comprehensive real-world case studies in the banking industry, emphasizing its applicability with limited and subjective data.
  • Highlights the model’s superior ability to incorporate expert opinions and subjective judgments, improving decision-making in environments with scarce or imprecise data.
  • Validates the framework’s capacity for accurate efficiency assessment and resource allocation despite data uncertainty, supporting strategic decision-making in diverse complex systems.
  • Showcases the potential of the proposed approach to enhance traditional DEA methodologies by effectively capturing data variability and uncertainty in multi-agent and multi-stage environments.

Keywords

Main Subjects

[1] Ahmadi, O., Mortazavi, S.B., Mahabadi, H.A., Hosseinpouri, M. (2020). “Development of a dynamic  quantitative risk assessment methodology using fuzzy DEMATEL-BN and leading indicators”, Process Safety and Environmental Protection, 142, 15-44, doi:https://doi.org/10.1016/j.psep.2020.04.038.
[2] Boloori, F., Afsharian, M., Pourmahmoud, J. (2016). “Equivalent multiplier and envelopment DEA models for measuring efficiency under general network structures”, Measurement, 80, 259-269, doi:https://doi.org/10.1016/j.measurement. 2015.11.012.
[3] Charnes, A., Cooper, W.W., Rhodes, E. (1978). “Measuring the efficiency of decision making units”, European Journal of Operational Research, 2(6), 429-444, doi:https://doi.org/10.1016/0377-2217(78)90138-8.
[4] Chen, Y., Liang, L., Zhu, J. (2009). “Equivalence in two-stage DEA approaches”, European Journal of Operational Research, 193(2), 600-604, doi:https://doi.org/10.1016/j.ejor.2007.11.040.
[5] Cooper, W.W., Park, K.S., Yu, G. (1999). “IDEA and AR-IDEA: Models for dealing with imprecise data in DEA”, Management Science, 45(4), 597-607, doi:https://doi.org/10.1287/mnsc.45.4.597.
[6] Dyson, R.G., Shale, E.A. (2010). “Data envelopment analysis, operational research and uncertainty”, Journal of the Operational Research Society, 61(1), 25-34, doi:https://doi.org/10.1057/jors.2009.145.
[7] Ebrahimnejad, A., Tavana, M., Lotfi, F.H., Shahverdi, R., Yousefpour, M. (2014). “A three-stage data envelopment analysis model with application to banking industry”, Measurement, 49, 308-319, doi:https://doi.org/10.1016/j.measurement. 2013.11.043.
[8] Emrouznejad, A., Tavana, M., Hatami-Marbini, A. (2014). “The state of the art in fuzzy data envelopment analysis”, Performance Measurement with Fuzzy Data Envelopment Analysis, 1-45, doi:https://doi.org/10.1007/978-3-642-41372-8_1.
[9] Färe, R., Grosskopf, S., Whittaker, G. (2007). “Network dea”, Modeling Data Irregularities and Structural Complexities in Data Envelopment analysis, 209-240, doi:https://doi.org/10.1007/978-0-387-71607-7_12.
[10] Fried, H.O., Lovell, C.K., Schmidt, S.S. (Eds.). (2008). “The measurement of productive efficiency and productivity growth”, Oxford University Press, doi:https://doi.org/10.1093/acprof:oso/9780195183528.001.0001.
[11] Ghaffari-Hadigheh, A., Lio, W. (2020). “Network data envelopment analysis in uncertain environment”, Computers & Industrial Engineering, 148, 106657, doi:https://doi.org/10.1016/j.cie.2020.106657.
[12] Guo, P., Tanaka, H. (2001). “Fuzzy DEA: A perceptual evaluation method”, Fuzzy Sets and Systems, 119(1), 149-160, doi:https://doi.org/10.1016/S0165-0114(99)00106-2.
[13] Guo, P., Tanaka, H. (2008). “Decision making based on fuzzy data envelopment analysis”, Intelligent Decision and Policy Making Support Systems, 39-54, doi:https://doi.org/10.1007/978-3-540-78308-4_3.
[14] Hatami-Marbini, A., Emrouznejad, A., Tavana, M. (2011). “A taxonomy and review of the fuzzy data envelopment analysis literature: Two decades in the making”, European Journal of Operational Research, 214(3), 457-472., doi:https://doi.org/10.1016/j.ejor.2011.02.001.
[15] Henriques, I.C., Sobreiro, V.A., Kimura, H., Mariano, E.B. (2020). “Two-stage DEA in banks: Terminological controversies and future directions”, Expert Systems with Applications, 161, 113632, doi:https://doi.org/10.1016/j.eswa.2020.113632.
[16] Heydari, C., Omrani, H., Taghizadeh, R. (2020). “A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran”, Journal of Air Transport Management, 89, 101923, doi:https://doi.org/10.1016/j.jairtraman.2020.101923.
[17] Hwang, S.N., Kao, T.L. (2008). “Using two-stage DEA to measure managerial efficiency change of non-life insurance companies in Taiwan”, International Journal of Management and Decision Making, 9(4), 377-401, doi:https://doi.org/10.1504/IJMDM.2008.019362.
[18] Jahanshahloo, G.R., Vencheh, A.H., Foroughi, A.A., Matin, R.K. (2004). “Inputs/outputs estimation in DEA when some factors are undesirable”, Applied Mathematics and Computation, 156(1), 19-32, doi:https://doi.org/10.1016/S0096-3003(03)00814-2.
[19] Jamshidi, M., Sanei, M., Mahmoodirad, A., Lotfi, F.H., Tohidi, G. (2021). “Uncertain SBM data envelopment analysis model: A case study in Iranian banks”, International Journal of Finance & Economics, 26(2), 2674-2689, doi:https://doi.org/10.1002/ijfe.1927.
[20] Jemric, I., Vujcic, B. (2002). “Efficiency of banks in Croatia: A DEA approach”, Comparative Economic Studies, 44, 169-193, doi:https://doi.org/10.1057/ces.2002.13.
[21] Kao, C. (2014). “Network data envelopment analysis: A review”, European Journal of Operational Research, 239(1), 1-16, doi:https://doi.org/10.1016/j.ejor.2014.02.039
[22] Korostelëv, A.P., Simar, L., Tsybakov, A.B. (1995). “Efficient estimation of monotone boundaries”, The Annals of Statistics, 476-489, doi:https://doi.org/10.1214/aos/1176324531.
[23] Lertworasirikul, S., Fang, S.C., Joines, J.A., Nuttle, H.L. (2003). “Fuzzy data envelopment analysis (DEA): A possibility approach”, Fuzzy Sets and Systems, 139(2), 379-394, doi:https://doi.org/10.1016/S0165-0114(02)00484-0.
[24] Lio, W., Liu, B. (2018). “Uncertain data envelopment analysis with imprecisely observed inputs and outputs”, Fuzzy Optimization and Decision Making, 17, 357-373, doi:https://doi.org/10.1007/s10700-017-9276-x.
[25] Liu, B. (2009). “Some research problems in uncertainty theory”, Journal of Uncertain Systems, 3(1), 3-10.
[26] Liu, B. (2010). “Uncertainty theory: A new paradigm for handling uncertain systems”, Journal of Uncertain Systems, 3-10, doi:https://doi.org/10.1109/TKDE.2012.179.
[27] Mergoni, A., Emrouznejad, A., De Witte, K. (2024). “Fifty years of data envelopment analysis.” European Journal of Operational Research, 326(3), 389-412, doi:https://doi.org/10.1016/j.ejor.2024.12.049.
[28] Mohmmad Nejad, Z., Ghaffari-Hadigheh, A. (2018). “A novel DEA model based on uncertainty theory”, Annals of Operations Research, 264, 367-389, doi:https://doi.org/10.1007/s10479-017-2652-7.
[29] Olesen, O.B., Petersen, N.C. (2016). “Stochastic data envelopment analysis—A review”, European Journal of Operational Research, 251(1), 2-21, doi:https://doi.org/10.1016/j.ejor.2015.07.058.
[30] Paul, C.J.M., Nehring, R. (2005). “Product diversification, production systems, and economic performance in US agricultural production”, Journal of Econometrics, 126(2), 525-548, doi:https://doi.org/10.1016/j.jeconom.2004.05.012.
[31] Pourbabagol, H., Amiri, M., Taghavifard, M.T., Hanafizadeh, P. (2023). “A new fuzzy DEA network based on possibility and necessity measures for agile supply chain performance evaluation: A case study”, Expert Systems with Applications, 220, 119552, doi:https://doi.org/10.1016/j.eswa.2023.119552.
[32] Pourmahmoud, J., Bafekr Sharak, N. (2018). “Measuring cost efficiency with new fuzzy DEA models”, International Journal of Fuzzy Systems, 20(1), 155-162, doi:https://doi.org/10.1007/s40815-017-0316-z.
[33] Pourmahmoud, J., Bagheri, N. (2021). “Providing an uncertain model for evaluating the performance of a basic two-stage system”, Soft Computing, 25, 4739-4748, doi:https://doi.org/10.1007/s00500-020-05481-8.
[34] Pourmahmoud, J., Bagheri, N. (2023). “Uncertain malmquist productivity index: An application to evaluate healthcare systems during COVID-19 pandemic”, Socio-Economic Planning Sciences, 87, 101522, doi:https://doi.org/10.1016/j.seps. 2023.101522.
[35] Pourmahmoud, J., Eini, M., Darvishi, D., Mehrabian, S. (2025). “A new approach in DEA with three-parameter interval grey numbers: investigating the effect of the drug-TPA on stroke patients”, Grey Systems: Theory and Application, 15(3), 547-573, doi:https://doi.org/10.1108/GS-08-2024-0097.
[36] Puri, J., Yadav, S.P. (2014). “A fuzzy DEA model with undesirable fuzzy outputs and its application to the banking sector in India”, Expert Systems with Applications, 41(14), 6419-6432, doi:https://doi.org/10.1016/j.eswa.2014.04.013.
[37] Ratner, S.V., Shaposhnikov, A.M., Lychev, A.V. (2023). “Network DEA and its applications (2017–2022): A systematic literature review”, Mathematics, 11(9), 2141, doi:https://doi.org/10.3390/math11092141.
[38] Rostamy-Malkhalifeh, M., Poudineh, E., Payan, A. (2018). “A fully fuzzy method of network data envelopment analysis for assessing revenue efficiency based on ranking functions”, Control and Optimization in Applied Mathematics, 3(2), 77-96, doi:https://doi.org/10.30473/coam.2019.46226.1115.
[39] Shakouri, R., Salahi, M., Kordrostami, S. (2019). “Stochastic p-robust approach to two-stage network DEA model”, Quantitative Finance and Economics, 3(2), 315-346, doi:https://doi.org/10.3934/QFE.2019.2.315.
[40] Simar, L. (1996). “Aspects of statistical analysis in DEA-type frontier models”, Journal of Productivity Analysis, 7, 177-185, doi:https://doi.org/10.1007/BF00157040.
[41] Simar, L., Wilson, P.W. (2000). “A general methodology for bootstrapping in non-parametric frontier models”, Journal of Applied Statistics, 27(6), 779-802, doi:https://doi.org/10.1080/02664760050081951.
[42] Simar, L., Wilson, P.W. (2011). “Two-stage DEA: Caveat emptor”, Journal of Productivity Analysis, 36, 205-218, doi:https://doi.org/10.1007/s11123-011-0230-6.
[43] Soleimani-Damaneh, M., Jahanshahloo, G.R., Abbasbandy, S. (2006). “Computational and theoretical pitfalls in some current performance measurement techniques; and a new approach”, Applied Mathematics and Computation, 181(2), 1199-1207, doi:https://doi.org/10.1016/j.amc.2006.01.085.
[44] Thanassoulis, E. (1999). “Data envelopment analysis and its use in banking”, Interfaces, 29(3), 1-13, doi:https://doi.org/10.1287/inte.29.3.1.
[45] Wang, C.N., Nguyen, T.L., Dang, T.T. (2021). “Analyzing operational efficiency in real estate companies: An application of GM (1, 1) and dea malmquist model”, Mathematics, 9(3), 202, doi:https://doi.org/10.3390/math 9030202.
[46] Wen, M., Guo, L., Kang, R., Yang, Y. (2014). “Data envelopment analysis with uncertain inputs and outputs”, Journal of Applied Mathematics, 2014(1), 307108, doi:https://doi.org/10.1155/2014/307108.
[47] Yeh, C.C., Chi, D.J., Hsu, M.F. (2010). “A hybrid approach of DEA, rough set and support vector machines for business failure prediction”, Expert Systems with Applications, 37(2), 1535-1541, doi:https://doi.org/10.1016/j.eswa.2009.06.088.
[48] Zadeh, L. (1965). “Fuzzy sets”, Inform Control, 8, 338-353, doi:https://doi.org/10.1016/S0019-9958(65)90241-X.
[49] Zadeh, L.A., Klir, G.J., Yuan, B. (1996). “Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers”, (Vol. 6). World Scientific, doi:https://doi:10.1142/2895doi:10.1142/2895.
[50] Zhou, Z., Lin, L., Xiao, H., Ma, C., Wu, S. (2017). “Stochastic network DEA models for two-stage systems under the centralized control organization mechanism”, Computers & Industrial Engineering, 110, 404-412, doi:https://doi.org/10.1016/j.cie.2017.06.005.
[51] Zhou, X., Xu, Z., Chai, J., Yao, L., Wang, S., Lev, B. (2019). “Efficiency evaluation for banking systems under uncertainty: A multi-period three-stage DEA model”, Omega, 85, 68-82, doi:https://doi.org/10.1016/j.omega..2018.05.012.