In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Department of Applied Mathematics‎, ‎University of Science and Technology of Mazandaran‎, ‎Behshahr‎, ‎Iran‎.

10.30473/coam.2025.74474.1306

Abstract

This paper presents a hybrid scheme for solving optimal control problems‎. ‎Discretizing the time interval and assuming a constant control value on each sub-interval transforms the optimal control problem into an assignment problem‎. ‎To cluster feasible solutions, a novel method is proposed in this paper, which applies metaheuristic algorithms—specifically, genetic algorithms and particle swarm optimization—to generate a large number of solutions. ‎Subsequently‎, ‎the $K$-means clustering method is employed to classify these solutions into clusters‎. ‎Enhancing the median of each cluster‎, ‎using metaheuristic techniques, ultimately results in improved medians‎. ‎The best median from the final iteration of the algorithm serves as an acceptable solution for the optimal control problem‎. ‎In some cases‎, ‎it even succeeds in discovering a new best solution‎.

Highlights

  • A hybrid optimization framework is introduced for optimal control that integrates time discretization, clustering, and metaheuristics.
  • A two-stage approach uses genetic algorithms (GA) and particle swarm optimization (PSO) to generate diverse feasible solution populations for the control problem.
  • The solution quality is enhanced by applying GA crossover and PSO directional updates to refine candidates within and across clusters.
  • The optimal control problem is reformulated as selecting the best representative solution from clustered populations via a K-means-based P-median mechanism, improving tractability and performance.
  • The method is validated on multiple optimal control problems, exploring three cluster counts and two time-interval discretizations, with several instances achieving superior results compared to existing literature.

Keywords

Main Subjects

[1] Alfiyatin, A.N., Mahmudy, W.F., Anggodo, Y.P. (2018). “K-Means clustering and genetic algorithm to solve vehicle routing problem with time windows”, Indonesian Journal of Electrical Engineering and Computer Science, 11(2), 462-468, doi:http://doi.org/10.11591/ijeecs.v11.i2.pp462-468.
[2] Borzabadi, A.H., Mehne, H.H. (2009). “Ant colony optimization for optimal control problems”, Journal of Information and Computing Science, 4(4), 259-264, doi:https://doi.org/2024-JICS-22734.
[3] Borzabadi, A.H., Mirassadi, S., Heidari, M. (2014). “Population based algorithms for approximate optimal distributed control of wave equations“, Iranian Journal of Numerical Analysis and Optimization, 4(2), 31-41, doi:https://doi.org/10.22067/ijnao.v4i2.40230.
[4] Borzabadi, A.H., Ghasemi, S.G., Fard, O.S. (2011). “A hybrid iterative scheme for optimal control problems based on L-M and penalty techniques”, Journal of Advanced Research in Dynamical and Control Systems, 3(2), 53-65.
[5] Cattrysse, D.G., Van Wassenhove, L.N. (1992). “A survey of algorithms for the generalized assignment problem”, European Journal of Operational Research, 60(3), 260-272, doi:https://doi.org/10.1016/0377-2217(92)90077-m.
[6] Diveev, A., Sofronova, E., Konstantinov, S. (2021). “Approaches to numerical solution of optimal control problem using evolutionary computations”, Applied Sciences, 11(15), 7096, doi:https://doi.org/10.3390/app11157096.
[7] Farahani, M.A., McKendall, A. (2023). “A Genetic Algorithm Meta-Heuristic for a Generalized Quadratic Assignment Problem”, Preprint available at arXiv:2308.07828, doi:http://doi.org/10.48550/arXiv.2308.07828.
[8] Fard, O.S., Borzabadi A.H. (2007). “Optimal control problem, quasi-assignment problem and genetic algorithm”, Enformatika, Transaction on Engineering Computations and Technologies, 19, 422-424.
[9] Gaon, T., Gabay, Y., Cohen, M.W. (2025). “Optimizing electric vehicle routing efficiency using K-means clustering and genetic algorithms”, Future Internet, 17(3), 97, doi:https://doi.org/10.3390/fi17030097.
[10] Greistorfer, P., Staněk, R., Maniezzo, V. (2022). “A tabu search matheuristic for the generalized quadratic assignment problem”, In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds) Metaheuristics. MIC 2022. Lecture Notes in Computer Science, vol 13838. Springer, Cham, doi:https://doi.org/10.1007/978-3-031-26504-4_46.
[11] Hatamian, R., Samareh Hashemi, S.A. (2025). “A hybrid numerical approach for solving nonlinear optimal control problems”, Control and Optimization in Applied Mathematics, 10(1), 125-138, doi: https://doi.org/10.30473/coam.2025.72875.1273.
[12] Jain, A.K. (2010). “Data clustering: 50 years beyond K-means”, Pattern Recognition Letters, 31(8), 651-666, doi:https://doi.org/10.1016/j.patrec.2009.09.011.
[13] Konstantinov, S., Diveev, A. (2021). “Evolutionary algorithms for optimal control problem of mobile robots group interaction”, In: Olenev, N.N., Evtushenko, Y.G., Jaćimović, M., Khachay, M., Malkova, V. (eds) Advances in Optimization and Applications. OPTIMA 2021. Communications in Computer and Information Science, vol 1514. Springer, Cham, doi:https://doi.org/10.1007/978-3-030-92711-0_9.
[14] Lucrezia, M. (2024). “Application of optimal control techniques to the parafoil flight of space rider”, Aerotecnica Missili & Spazio, 103(2), 117-128, doi:https://doi.org/10.1007/s42496-023-00176-3.
[15] Massaro, M., Lovato, S., Bottin, M., Rosati, G. (2023). “An optimal control approach to the minimum-time trajectory planning of robotic manipulators”, Robotics, 12(3), 64, doi:https://doi.org/10.3390/robotics12030064.
[16] Mehne, H.H., Borzabadi, A.H. (2006). “A numerical method for solving optimal control problems using state parametrization”, Numerical Algorithms, 42, 165-169, doi:https://doi.org/10.1007/s11075-006-9035-5.
[17] Mînzu, V., Arama, I. (2022). “Optimal control systems using evolutionary algorithm-control input range estimation”, Automation, 3(1), 95-115, doi:https://doi.org/10.3390/automation3010005.
[18] Salimi, M., Borzabadi, A.H., Mehne, H.H., Heydari, A. (2021). “The hub location’s method for solving optimal control problems”, Evolutionary Intelligence, 14, 1671-1690, doi:https://doi.org/10.1007/s12065-020-00437-1.
[19] Salimi, M., Borzabadi, A.H., Mehne, H.H., Heydari, A. (2025). “A parallel hybrid variable neighborhood descent algorithm for non-linear optimal control problems”, Iranian Journal of Numerical Analysis & Optimization, 15(2), doi:https://doi.org/10.22067/ijnao.2024.86859.1389.