[1] Akram, M., Cho, T.H. (2016). “Energy efficient fuzzy adaptive selection of verification nodes in wireless sensor networks”. Ad Hoc Networks, 47, 16-25, doi:https://doi.org/10.1016/j.adhoc.2016.04.010.
[2] Babakordi, F. (2023). “An efficient method for solving the fuzzy AH1N1/09 influenza model using the fuzzy Atangana-Baleanu-Caputo fractional derivative”, Fuzzy Optimization and Modeling Journal, 4(2), 27-38, doi:https://doi.org/10.30495/fomj.2023.1988760.1096.
[3] Babakordi, F. (2024). “Arithmetic operations on generalized trapezoidal hesitant fuzzy numbers and their application to solving generalized trapezoidal hesitant fully fuzzy equation”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 32(1), 85-108, doi:https://doi.org/10.1142/S0218488524500041.
[4] Babakordi, F., Allahviranloo, T., Shahriari, M.R., Catak, M. (2024). “Fuzzy Laplace transform method for a fractional fuzzy economic model based on market equilibrium”, Information Sciences, 665, 120308, doi:https://doi.org/10.1016/j.ins.2024.120308.
[5] Chamam, A., Pierre, S. (2010). “A distributed energy-efficient clustering protocol for wireless sensor networks”, Computers & Electrical Engineering, 36(2), 303-312, doi:https://doi.org/10.1016/j.compeleceng.2009.03.008.
[6] Chang, J.Y., Ju, P.H. (2012). “An efficient cluster-based power saving scheme for wireless sensor networks”, EURASIP Journal on Wireless Communications and Networking, 2012, 1-10, doi:https://doi.org/10.1186/1687-1499-2012-172.
[7] Deepa, K., Zaheeruddin, Vashist, S. (2021). “Density-based fuzzy C-means clustering to prolong network lifetime in smart grids”, Wireless Personal Communications, 119(3), 2817-2836, doi:https://doi.org/10.1007/s11277-021-08371-w.
[8] García, M., Sendra, S., Lloret, J., Canovas, A. (2013). “Saving energy and improving communications using cooperative group-based wireless sensor networks”, Telecommunication Systems, 52, 2489-2502, doi:https://doi.org/10.1007/s11235-011-9568-3.
[9] Gou, H., Yoo, Y. (2010). “An energy balancing LEACH algorithm for wireless sensor networks”, 2010 Seventh International Conference on Information Technology: New Generations, Las Vegas, NV, USA, (pp. 822-827), doi:https://doi.org/10.1109/ITNG.2010.12.
[10] Grover, J., Sharma, M. (2014). “Optimized GAF in wireless sensor network”, Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization, Noida, India, (pp. 1-6), doi:https://doi.org/10.1109/ICRITO.2014.7014686.
[11] Guo, W., Zhang, W., Lu, G. (2010). “PEGASIS protocol in wireless sensor network based on an improved ant colony algorithm”, 2010 Second International Workshop on Education Technology and Computer Science, Wuhan, China, (pp. 64-67), doi:https://doi.org/10.1109/ETCS.2010.285.
[12] Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H. (2000). “Energy-efficient communication protocol for wireless microsensor networks”, Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, HI, USA, (pp. 10 pp. vol.2), doi:https://doi.org/10.1109/HICSS.2000.926982.
[13] Ibrahim, M.E., Ahmed, A.E. (2022). “Energyaware intelligent hybrid routing protocol for wireless sensor networks”, Concurrency and Computation: Practice and Experience, 34(3), e6601, doi:https://doi.org/10.1002/cpe.6601.
[14] Jalili, A. (2024). “A hybrid fuzzy-genetic algorithm for energy-efficient routing in wireless sensor networks”, Fuzzy Optimization and Modeling Journal, 5(4), doi:https://doi.org/10.71808/fomj.2024.1194011.
[15] Jalili, A., Gheisari, M., Alzubi, J.A., Fernández-Campusano, C., Kamalov, F., Moussa, S. (2024). “A novel model for efficient cluster head selection in mobile WSNs using residual energy and neural networks”, Measurement: Sensors, 33, 101144, doi:https://doi.org/10.1016/j.measen.2024.101144.
[16] Jalili, A., Alzubi, J.A., Rezaei, R., Webber, J.L., Fernández-Campusano, C., Gheisari, M., Mehbodniya, A. (2024). “Markov chain-based analysis and fault tolerance technique for enhancing chain-based routing in WSNs”, Concurrency and Computation: Practice and Experience, 36(12), e8032, doi:https://doi.org/10.1002/cpe.8032.
[17] Jung, S.M., Han, Y.J., Chung, T.M. (2007). “The concentric clustering scheme for efficient energy consumption in the PEGASIS”, Proceedings of the 9th International Conference on Advanced Communication Technology, Gangwon, Korea (South), 12-17, 260-265, doi:https://doi.org/10.1109/ICACT.2007.358351.
[18] Farooq, M.O., Dogar, A.B., Shah, G.A. (2010). “MR-LEACH: multi-hop routing with low energy adaptive clustering hierarchy”, 2010 Fourth International Conference on Sensor Technologies and Applications, Venice, Italy, 262-268, doi:https://doi.org/10.1109/SENSORCOMM.2010.48.
[19] Fouladlou, M., Khademzadeh, A. (2017). “An energy efficient clustering algorithm for wireless sensor devices in internet of things”, 2017 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, (pp. 39-44), doi:https://doi.org/10.1109/RIOS.2017.7956441.
[20] Khabiri, M., Ghaffari, A. (2018). “Energy-aware clustering-based routing in wireless sensor networks using cuckoo optimization algorithm”, Wireless Personal Communications, 98(3), 2473-2495, doi:https://doi.org/10.1007/s11277-017-4983-8.
[21] Klaoudatou, E., Konstantinou, E., Kambourakis, G., Gritzalis, S. (2011). “A survey on cluster-based group key agreement protocols for WSNs”, IEEE Communications Surveys & Tutorials, 13(3), 429-442, doi:https://doi.org/10.1109/SURV.2011.061710.00109.
[22] Lee, J.S., Kao, T.Y. (2016). “An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks”, IEEE Internet of Things Journal, 3(6), 951-958, doi:http://dx.doi.org/10.1109/JIOT.2016.2530682.
[23] Ma, J., Wang, S., Meng, C., Ge, Y., Du, J. (2018). “Hybrid energy-efficient APTEEN protocol based on ant colony algorithm in wireless sensor network”, EURASIP Journal on Wireless Communications and Networking, 2018(1), 102, doi:https://doi.org/10.1186/s13638-018-1106-5.
[24] Mehmood, A., Lloret, J., Sendra, S. (2016). “A secure and low-energy zone-based wireless sensor networks routing protocol for pollution monitoring”, Wireless Communications and Mobile Computing, 16(17), 2869-2883, doi:https://doi.org/10.1002/wcm.2734.
[25] Mehmood, A., Khan, S., Shams, B., Lloret, J. (2015). “Energy-efficient multi-level and distance-aware clustering mechanism for WSNs”, International Journal of Communication Systems, 28(5), 972-989, doi:https://doi.org/10.1002/dac.2720.
[26] Mehmood, A., Lv, Z., Lloret, J., Umar, M.M. (2017). “ELDC: An artificial neural network-based energy-efficient and robust routing scheme for pollution monitoring in WSNs”, IEEE Transactions on Emerging Topics in Computing, 8(1), 106-114, doi:http://dx.doi.org/10.1109/TETC.2017.2671847.
[27] Mosavvar, I., Ghaffari, A. (2019). “Data aggregation in wireless sensor networks using firefly algorithm”, Wireless Personal Communications, 104(1), 307-324, doi:https://doi.org/10.1007/s11277-018-6021-x.
[28] Sefati, S., Abdi, M., Ghaffari, A. (2021). “Cluster-based data transmission scheme in wireless sensor networks using black hole and ant colony algorithms”, International Journal of Communication Systems, 34(9), e4768, doi:https://doi.org/10.1002/dac.4768.
[29] Younis, O., Fahmy, S. (2004). “HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks”, IEEE Transactions on Mobile Computing, 3(4), 366-379, doi:https://doi.org/10.1109/TMC.2004.41.
[30] Zeng, K., Ren, K., Lou, W., Moran, P.J. (2006). “Energy-aware geographic routing in lossy wireless sensor networks with environmental energy supply”, Proceedings of the 3rd International
Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine ’06). Association for Computing Machinery, New York, NY, USA, 8-es, doi:https://doi.org/10.1145/1185373.1185384.
[31] Zhixiang, D., Bensheng, Q. (2008). “Three-layered routing protocol for WSN based on LEACH algorithm”, 2007 IET Conference on Wireless, Mobile and Sensor Networks (CCWMSN07), Shanghai, 72-75, doi:http://dx.doi.org/10.1049/cp:20070086.