[1] Åström, K.J., Murray, R.M. (2008). “Feedback Systems: An introduction for scientists and engineers”. Princeton University Press.
[2] Bian, T., Jiang, Z.P. (2021). “Reinforcement learning and adaptive optimal control for continuoustime nonlinear systems: A value iteration approach”. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2781-2790, doi:https://doi.org/10.1109/TNNLS.2020.3045087.
[3] Chen, A.S., Herrmann, G. (2019). “Adaptive optimal control via continuous-time Q-learning for unknown nonlinear affine systems”. 2019 IEEE 58th Conference on Decision and Control, 1007-1012, doi:https://doi.org/10.1109/CDC40024.2019.9030116.
[4] Farzanegan, B., Suratgar, A.A., Menhaj, M.B., Zamani, M. (2022). “Distributed optimal control for continuous-time nonaffine nonlinear interconnected systems”. International Journal of Control, 95(12), 3462-3476, doi:https://doi.org/10.1080/00207179.2021.1976420.
[5] Han, X., Zhao, X., Karimi, H.R., Wang, D., Zong, G. (2021). “Adaptive optimal control for unknown constrained nonlinear systems with a novel quasi-model network”. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2867-2878, doi:https://doi.org/10.1109/TNNLS.2020.3046614.
[6] Hirsch, M.W., Smale, S., Devaney, R.L. (2013). “Differential equations, dynamical systems, and an introduction to chaos”. Academic Press, doi:https://doi.org/10.1016/C2009-0-61160-0.
[7] Huang, M., Hu, Z., Wang, L. (2022). “Optimal consensus control for heterogeneous nonlinear non-affine multi-agent systems with uncertain control directions”. ICIC Express Letters, 16(2), 177-185.
[8] Li, K., Li, Y. (2021). “Performance-based optimal control for stochastic nonlinear systems with unknown dead-zone”. Optimal Control Applications and Methods, 43(1), 283-303, doi:http://dx.doi.org/10.1002/oca.2794.
[9] Li, J., Ding, J., Chai, T., Lewis, F.L., Jagannathan, S. (2020). “Adaptive interleaved reinforcement learning: Robust stability of affine nonlinear systems with unknown uncertainty”. IEEE Transactions on Neural Networks and Learning Systems, 33(1), 270-280, doi:https://doi.org/10.1109/TNNLS.2020.3027653.
[10] Li, Y., Fan, Y., Li, K., Liu, W., Tong, S. (2021). “Adaptive optimized backstepping control-based RL algorithm for stochastic nonlinear systems with state constraints and its application”. IEEE Transactions on Cybernetics, 52(10), 10542-10555, doi:https://doi.org/10.1109/TCYB.2021.3069587.
[11] Li, Y., Liu, Y., Tong, S. (2022). “Observer-based neuro-adaptive optimized control of strict-feedback nonlinear systems with state constraints”. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 3131-3145, doi:https://doi.org/10.1109/TNNLS.2021.3051030.
[12] Li, Y., Zhang, J., Liu, W., Tong, S. (2021). “Observer-based adaptive optimized control for stochastic nonlinear systems with input and state constraints”. IEEE Transactions on Neural Networks
and Learning Systems, 33(12), 7791-7805, doi:http://dx.doi.org/10.1109/TNNLS.2021.3087796.
[13] Lin, H., Wei, Q., Liu, D. (2015). “Online identifier–actor–critic algorithm for optimal control of nonlinear systems”. 2015 Sixth International Conference on Intelligent Control and Information Processing, Wuhan, China, 399-405, doi:https://doi.org/10.1109/ICICIP.2015.7388204.
[14] Liu, Y.J., Li, S., Tong, S., Chen, C.P. (2018). Adaptive reinforcement learning control based on neural approximation for nonlinear discrete-time systems with unknown nonaffine dead-zone input. IEEE Transactions on Neural Networks and Learning Systems, 30(1), 295-305, doi:http://dx.doi.org/10.1109/TNNLS.2018.2844165.
[15] Luo, B., Liu, D., Huang, T., Yang, X., Ma, H. (2017). “Multi-step heuristic dynamic programming for optimal control of nonlinear discrete-time systems”. Information Sciences, 411, 66-83, doi:https://doi.org/10.1016/j.ins.2017.05.005.
[16] Kim, J.W., Park, B.J., Yoo, H., Oh, T.H., Lee, J.H., Lee, J.M. (2020). “A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system”. Journal of Process Control, 87, 166-178, doi:https://doi.org/10.1016/j.jprocont.2020.02.003.
[17] Ma, X., Tan, Y., Mei, H. (2023). “Predefined-time consensus of nonlinear multi-agent input delay/dynamic event-triggered under switching topology”. IEEE Access, 11, 29883-29895, doi:https://doi.org/10.1109/access.2023. 3258547.
[18] Mei, H., Wen, X. (2025). “Event-triggered predefined-time sliding mode control for consensus tracking of multiagent systems with actuator saturation and faults”. International Journal of Dynamics and Control, 13, 167, doi:https://doi.org/10.1007/s40435-025-01670-1.
[19] Mu, C., Wang, D. (2017). “Neural-network-based adaptive guaranteed cost control of nonlinear dynamical systems with matched uncertainties”. Neurocomputing, 245, 46-54, doi:https://doi.org/10.1016/j.neucom.2017.03.047.
[20] Oldham, K.B., Spanier, J. (1974). “The fractional calculus: Theory and applications of differentiation and integration to arbitrary order”. Elsevier Science, Volume 111.
[21] Podlubny, I. (1999). “Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications”. Academic Press (Mathematics in Science and Engineering), Volume 198.
[22] Scheinker, A., Scheinker, D. (2021). “Extremum seeking for optimal control problems with unknown time-varying systems and unknown objective functions”. International Journal of Adaptive Control and Signal Processing, 35(7), 1143-1161, doi:https://doi.org/10.1002/acs.3097.
[23] Song, R., Lewis, F.L. (2020). “Robust optimal control for a class of nonlinear systems with unknown disturbances based on disturbance observer and policy iteration”. Neurocomputing, 390, 185-195, doi:https://doi.org/10.1016/ j.neucom.2020.01.082.
[24] Sun, J., Liu, C. (2018). “Distributed fuzzy adaptive backstepping optimal control for nonlinear multimissile guidance systems with input saturation”. IEEE Transactions on Fuzzy Systems, 27(3), 447-461, doi:http://dx.doi.org/10.1109/TFUZZ.2018.2859904.
[25] Sui, S., Tong, S., Chen, C.P., Sun, K. (2019). “Fuzzy adaptive optimal control for nonlinear switched systems with actuator hysteresis”. International Journal of Adaptive Control and Signal Processing, 33(4), 609-625, doi:https://doi.org/10.1002/acs.2975.
[26] Sui, S., Tong, S., Sun, K. (2018). “Adaptive dynamic programming based fuzzy control for triangular structure nonlinear uncertain systems with unknown time delay”. Optimal Control Applications and Methods, 39(2), 819-834, doi:https://doi.org/10.1002/oca.2379.
[27] Sun, K., Sui, S., Tong, S. (2017). “Fuzzy adaptive decentralized optimal control for strict feedback nonlinear large-scale systems”. IEEE Transactions on Cybernetics, 48(4), 1326-1339, doi:https://doi.org/10.1109/TCYB.2017.2692384.
[28] Sun, T., Sun, X.M. (2020). “An adaptive dynamic programming scheme for nonlinear optimal control with unknown dynamics and its application to turbofan engines”. IEEE Transactions on Industrial Informatics, 17(1), 367-376, , doi:http://dx.doi.org/10.1109/TII.2020.2979779.
[29] Tarasov, V.E. (2013). “Fractional calculus on fractal domains”. Physics Letters A, 377(4-6), 321-324, doi:https://doi.org/10.1016/j.physleta.2012.11.046.
[30] Tavazoei, M.S. (2020). “Fractional order chaotic systems: History, achievements, applications, and future challenges”. The European Physical Journal Special Topics, 229, 887-904, doi:https://doi.org/10.1140/epjst/e2020-900238-8.
[31] Zhang, J., Zhang, H., Feng, T. (2017). “Distributed optimal consensus control for nonlinear multiagent system with unknown dynamic”. IEEE Transactions on Neural Networks and Learning Systems, 29(8), 3339-3348, doi:http://dx.doi.org/10.1109/TNNLS.2017.2728622.