In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

Department of Mathematics and Computer Science‎, ‎Lorestan‎ ‎University‎, ‎Lorestan‎, ‎68151-44316‎, ‎Iran.

10.30473/coam.2025.74960.1316

Abstract

In this paper, we introduce a new continuous quantum evolutionary optimization algorithm designed for optimizing nonlinear convex functions, non-convex functions, and efficiency evaluation problems using quantum computing principles. ‎ Traditional quantum evolutionary algorithms have primarily been implemented for discrete and binary decision variables‎. ‎The proposed method has been designed as a novel continuous quantum evolutionary optimization algorithm tailored to problems with continuous decision variables‎. ‎ To assess the algorithm’s performance, several numerical experiments are conducted‎, ‎and the simulated results are compared with the Grey Wolf Optimizer and Magnet Fish Optimization search algorithm‎. ‎The simulation results indicate that the proposed algorithm can approximate the optimal solution more accurately than the two compared algorithms.

Highlights

  • Introduction of a novel Continuous Quantum Evolutionary Algorithm (CQEA) designed to determine the Markowitz efficient frontier.
  • Standard quantum evolutionary algorithms struggle with continuous optimization.
  • CQEA enhances the observer operation to solve a broader class of continuous optimization problems.
  • CQEA’s technical characteristics and performance are evaluated using established test functions.
  • Assessment covers both unimodal and multimodal functions to gauge convergence and robustness.
  • Two performance indices are computed to demonstrate the convergence behavior of CQEA.
  • Demonstrates the algorithm on three representative problems: convex, non-convex, and high-dimensional efficient-evaluation optimization tasks.
  • Two high-dimensional test cases illustrate the practical applicability of CQEA.

Keywords

Main Subjects

[1] Ardakani, J.S., Farahmand Rad, S., Kanzi, N. (2019). “Characterization of properly efficient solutions for convex multiobjective programming with nondifferentiable vanishing constraints”. Control and Optimization in Applied Mathematics, 3(2), 49-58, doi:https://doi.org/10.30473/coam.2019.42442.1094.
[2] Arjmandzadeh, A., Yarahmadi, M. (2017). “Quantum genetic learning control of quantum ensembles with Hamiltonian uncertainties”. Entropy Journal, 19(8), doi:https://doi.org/10.3390/e19080376.
[3] Bidlingmaier, M.E. (2023). “An evaluation algorithm for datalog with equality”. Computer Science, arXiv preprint arXiv:2302.05792, doi:https://doi.org/10.48550/arXiv.2302.05792.
[4] Bunnag, D., Sun, M. (2005). “Genetic algorithm for constrained global optimization in continuous variables”. Applied Mathematics and Computation, 171(1), 604-636, doi:https://doi.org/10.1016/j.amc.2005.01.075.
[5] Chan, L.K.C., Karceski, J., Lakonishok, J. (1998). “The risk and return from factors”. Journal of Financial and  Quantitative Analysis, 33(2), 159-188, doi:https://doi.org/10.2307/2331306.
[6] Ebrahimia, M.A., Dehnavia, H.D., Mirabib, M., Honaria, V., Sadeghian, A. (2023). “Solving NP-hard problems using a new genetic algorithm”. International Journal of Nonlinear Analysis and Applications, 14(1), 275-285, doi:10.22075/ijnaa.2022.26610.3364.
[7] Effati, S., Ghomashi, A., Nazemi, A.R. (2007). “Application of projection neural network in solving convex programming problems”. Applied Mathematics and Computation, 188(2), 1103-1114,
doi:https://doi.org/10.1016/j.amc.2006.10.088.
[8] Eiben, A.E., Smith, J.E. (2015). “Introduction to evolutionary computing”. Springer Berlin, Heidelberg, doi:https://doi.org/10.1007/978-3-662-44874-8.
[9] Eshaghnezhad, M., Effati, S., Mansoori, M. (2017). “A neuro dynamic model to solve nonlinear pseudo-monotone projection equation and its applications”. IEEE Transactions on Cybernetics, 47(10), 3050-3062, doi:https://doi.org/10.1109/TCYB.2016.2611529.
[10] Eshaghnezhad, M., Effati, S., Mansoori, A. (2022). “A compact MLCP-based projection recurrent neural network model to solve shortest path problem”. Journal of Experimental & Theoretical Artificial Intelligence, 35(7), 1101-1119, doi:https://doi.org/10.1080/0952813X.2022.2067247.
[11] Gao, J., He, G., Liang, L., Feng, Z. (2014). “A quantum-inspired artificial immune system for the
multiobjective 0-1 knapsack problem”. Applied Mathematics and Computation, 230(1), 120-137, doi:https://doi.org/10.1016/j.amc.2013.12.088.
[12] Ghysels, E., Plazzi, A., Valkanov, R.I. (2016). “The risk-return relationship and financial crises”. January Electronic Journal, doi:http://dx.doi.org/10.2139/ssrn.2776702.
[13] Guo, X., Chan, R.H., Wong, W.K., Zhu, L. (2019). “Mean-variance, mean-VaR, and mean-CVaR models for portfolio selection with background risk”. Risk Management, 21, 73-98, doi:http://dx.doi.org/10.2139/ssrn.3254849.
[14] Henrion, D., Lasserre, J.B. (2004). “Solving nonconvex optimization problems”. IEEE Control Systems Magazine, 24(3), 72-83, doi:https://doi.org/10.1109/MCS.2004.1299534.
[15] Hindi, H. (2004). “A tutorial on convex optimization”. Proceedings of the 2004 American Control Conference, Boston, MA, USA, pp. 3252-3265 vol.4, doi:https://doi.org/10.23919/ACC.2004.1384411.
[16] Han, K.H., Kim, J.H. (2002). “Quantum-inspired evolutionary algorithm for a class of combinatorial optimization”. IEEE Transactions on Evolutionary Computation, 6(6), 580-593, doi:https://doi.org/10.1109/TEVC.2002.804320.
[17] Kim, Y., Kim, J.H., Han, K.H. (2006). “Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 Knapsack problems”. IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 2006, pp. 2601-2606, doi:https://doi.org/10.1109/CEC.2006.1688633.
[18] Li, Y., Jiao, L. (2008). “Quantum-inspired immune clonal algorithm”. Artificial Immune Systems, 33(2), 304-317, doi:https://doi.org/10.1109/TSMCB.2008.927271.
[19] Liu, Y. (2021). “Evaluation algorithm of teaching work quality in colleges and universities based on deep denoising autoencoder network”. Mobile Information Systems, 2021, doi:https://doi.org/10.1155/2021/8161985
[20] Markowitz, H. (1952). “Portfolio selection”. Journal of Finance, 7(1), 77-91, doi:https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.
[21] Mohammadsalahi, K., Modarres Khiyabani, F., Azarmir Shotorbani, N. (2022). “A new optimization method based on dynamic neural networks for solving non-convex quadratic constrained optimization problems”. Control and Optimization in Applied Mathematics, 7(2), 35-52, doi:https://doi.org/10.30473/coam.2022.64268.1206.
[22] Muñoz, A., Rubio, F. (2021). ”Evaluating genetic algorithms through the approximability hierarchy”. Journal of Computational Science, 53, doi:https://doi.org/10.1016/j.jocs.2021.101388.
[23] Mulvey, J.M., Rosenbaum, D.P., Shetty, B. (1997). “Strategic financial risk management and operations research”. European Journal of Operational Research, 97(1), 1-16, doi:https://doi.org/10.1016/S0377-2217(96)00222-6.
[24] Ray, T., Saini, P. (2007). “Engineering design optimization using a swarm with an intelligent information sharing among individuals”. Journal of Engineering Optimization, 33(6), 7350-748, doi:https://doi.org/10.1080/03052150108940941.
[25] Ruefli, T.W. (1990). “Mean-variance approaches to risk-return relationships in strategy: Paradox lost”. Management Science, 36(3), doi:https://doi.org/10.1287/mnsc.36.3.368.
[26] Semenov, A. (2021). “Measuring the stock’s factor beta and identifying risk factors under market inefficiency”. The Quarterly Review of Economics and Finance, 80, 635-649, doi:https://doi.org/10.1016/j.qref.2021.03.014.
[27] Saridakis, K.M., Dentsoras, A.G. (2008). “Soft computing in engineering design-A review”, Applied Soft Computing, 22(2), 202-221, doi:https://doi.org/10.1016/j.asoc.2023.111098.
[28] Szegö, G. (2002). “Measures of risk”. Journal of Banking & Finance, 6(7), 1253-1272, doi:https://doi.org/10.1016/j.ejor.2003.12.016.
[29] Tuy, H. (1992). “On nonconvex optimization problems with separated nonconvex variables”. Journal of Global  Optimization, 2, 133-144, doi:https://doi.org/10.1007/BF00122050.
[30] Xiong H., Wu, Z., Fan, H., Li, G., Jiang, G. (2018). “Quantum rotation gate in quantum-inspired evolutionary algorithm: A review, analysis and comparison study”. Swarm and Evolutionary, 42, 43-57, doi:https://doi.org/10.1016/j.swevo.2018.02.020.