In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Mathematics‎, ‎University of Mazandaran‎, ‎Babolsar‎, ‎Iran.

2 Department of Mathematics‎, ‎University of Science and Technology of Mazandaran‎, ‎Behshahr‎, ‎Iran‎.

10.30473/coam.2025.72692.1267

Abstract

The advection-dispersion, variable-order differential equations have a vast application in fluid physics and energy systems. ‎In this study, ‎we propose a Ritz-approximation method using shifted Legendre polynomials to construct approximate numerical solutions for these equations‎. ‎The proposed method discretizes the original problem, converting it into a system of nonlinear algebraic equations that can be solved numerically at selected points‎. We discuss ‎the error characteristics of the proposed method‎. ‎For validation‎, ‎the presented examples are compared with exact solutions and with prior results. ‎The results indicate that the proposed method is highly effective‎.‎‎

Highlights

  • Introduces a Ritz-approximation numerical method using Shifted Legendre Polynomials (SLPs) to solve advection-dispersion equations with variable-order fractional operators in a mobile-immobile framework (VOF).
  • Demonstrates discretization of the governing problem into a small, tractable system of nonlinear algebraic equations, enabling efficient numerical solution at selected collocation/basis points.
  • Provides a formal error analysis or discussion of the method’s error characteristics, establishing accuracy considerations for the proposed approach.
  • Validates the method through several numerical examples, comparing results against exact solutions and prior methods to demonstrate accuracy and effectiveness.
  • Establishes a flexible framework extendable to other variable-order fractional operators and/or alternative basis function sets beyond SLPs.

Keywords

Main Subjects

[1] Adel El-Sayed, A., Agarwal, P. (2019). “Numerical solution of multi-term variable-order fractional differential equations via shifted Legendre polynomials”. Mathematical Methods in the Applied Sciences, 11, 3978-3991, doi: https://doi.org/10.1002/mma.5627.
[2] Akhavan Ghassabzade, F., Bagherpoorfard, M. (2024). “Mathematical modeling and optimal control of carbon dioxide emissions”. Control and Optimization in Applied Mathematics, 9(1), 195-202, doi: https://doi.org/10.30473/coam.2023.67777.1233.
[3] Atangana, A. (2015). “On the stability and convergence of the time-fractional variable order telegraph equation”. Journal of Computational Physics, 293, 104-114, doi: https://doi.org/10.1016/j.jcp.2014.12.043.
[4] Benson, D.A., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W. (2001). “Fractional dispersion, le´vy motion, and the MADE tracer tests”, Transport in Porous Media, 42, 211-240, doi:  https://doi.org/10.1023/A:1006733002131.
[5] Chechkin, A.V., Gorenflo, R., Sokolov, I.M. (2005). “Fractional diffusion in inhomogeneous media”. Journal of Physics A: Mathematical and General, 38(42), 679-684, doi: https://doi.org/10.1088/0305-4470/38/42/L03.
[6] Deng, Z., Bengtsson, L., Singh, V.P. (2006). “Parameter estimation for fractional dispersion model for rivers”. Environmental Fluid Mechanics, 6, 451-475, doi: https://doi.org/10.1007/s10652-006-9004-5.
[7] Ebadi, G., Krishnan, E.V., Labidi, M., Zerrad, E., Biswas, A. (2011). “Analytical and numerical solutions to the Davey-Stewartson equation with power-law nonlinearity”. Waves in Random and Complex Media, 21(4), 559-590, doi: https://doi.org/10.1080/17455030.2011.606853.
[8] Elgindy, K.T. (2024). “Fourier–Gegenbauer pseudospectral method for solving periodic fractional optimal control problems”. Mathematics and Computers in Simulation, 225, 148-164, doi: https://doi.org/10.1016/j.matcom.2024.05.003.
[9] Hao, E., Zhang, J., Jin, Zh. (2024). “Dynamic analysis and optimal control of HIV/AIDS model with ideological transfer”. Mathematics and Computers in Simulation, 226, 578-605, doi: https://doi.org/10.1016/j.matcom.2024.07.012.
[10] Haq, S., Ghafoor, A., Hussain, M. (2019). “Numerical solutions of variable order time fractional (1+1)-and (1+2)-dimensional advection dispersion and diffusion models”. Applied Mathematics and Computation, 360, 107-121, doi: https://doi.org/10.1016/j.amc.2019.04.085.
[11] Heydari, M.H. (2016). “A new approach of the Chebyshev wavelets for the variable-order time fractional mobile-immobile advection-dispersion model”. arXiv preprint arXiv:1605.06332, doi: https://doi.org/10.48550/arXiv.1605.06332.
[12] Holmes, R. (1970). “An Introduction to the Approximation of Functions (Theodore J. Rivlin)”. SIAM Review, 12(2), doi: https://doi.org/10.1137/1012069.
[13] Ingman, D., Suzdalnitsky, J. (2004). “Control of damping oscillations by fractional differential operator with time-dependent order”. Computer Methods in Applied Mechanics and Engineering, 193, 5585-5595, doi: https://doi.org/10.1016/j.cma.2004.06.029.
[14] Jiang, W., Liu, N. (2017). “A numerical method for solving the time variable fractional order mobile-immobile advection-dispersion model”. Applied Numerical Mathematics, 119, 18-32, doi: https://doi.org/10.1016/j.apnum.2017.03.014.
[15] Kim, S., Levent Kavvas, M. (2006). “Generalized Fick’s law and fractional ADE for pollution transport in a river: Detailed derivation”. Journal of Hydrologic Engineering, 11(1), doi: https://doi.org/10.1061/(ASCE)1084-0699(2006)11:1(80).
[16] Lorenzo, C.F., Hartley, T.T. (2002). “Variable order and distributed order fractional operators”. Nonlinear Dynamics, 29(1), 57-98, doi: https://doi.org/10.1023/A:1016586905654.
[17] Marasi, H.R., Derakhshan, M.H. (2023). “Numerical simulation of time variable fractional order mobile–immobile advection–dispersion model based on an efficient hybrid numerical method with stability and convergence analysis”. Mathematics and Computers in Simulation, 205, 368-389, doi: https://doi.org/10.1016/j.matcom.2022.09.020.
[18] Parmar, D., Krishna Murthy, S.V.S.S.N.V.G., Rathish Kumar, B.V., Kumar, S. (2025). “Numerical simulation of fractional order double diffusive convective nanofluid flow in a wavy porous enclosure”. International Journal of Heat and Fluid Flow, 112, 109749, doi: https://doi.org/10.1016/j.ijheatfluidflow.2025.109749.
[19] Podlubny, I. (1999). “Fractional Differential Equations, An introduction to fractional derivatives”. In: Fractional Differential equations, to Methods of Their Solution and Some of Their Applications. Technical University of Kosice, Slovak Republic, Volume 198: Pages 1-340.
[20] Rajagopal, N., Balaji, S., Seethalakshmi, R., Balaji, V.S. (2020) “A new numerical method for fractional order Volterra integro-differential equations”. Ain Shams Engineering Journal, 11(1), 171-177, doi: https://doi.org/10.1016/j.asej.2019.08.004.
[21] Salehi, F., Habibollah, S., Mohseni Moghadam, M. (2018). “A Hahn computational operational method for variable order fractional mobile-–immobile advection–dispersion equation”. Mathematical Sciences, 12(2), 91-101, doi: https://doi.org/10.1007/s40096-018-0248-2.
[22] Samko, S.G., Ross, B. (1993). “Integration and differentiation to a variable fractional order”. Integral  Transforms and Special Functions, 1(4), 277-300, doi: https://doi.org/10.1080/10652469308819027.
[23] Shen, S., Liu, F., Chen, J., Turner, I., Anh, V. (2012). “Numerical techniques for the variable order time fractional diffusion equation”. Applied Mathematics and Computation, 218(22), 10861-10870, doi: https://doi.org/10.1016/j.amc.2012.04.047.
[24] Tayebi, A., Shekari, Y., Heydari, M.H. (2017). “A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation”. Journal of Computational Physics, 340, 655-669, doi: https://doi.org/10.1016/j.jcp.2017.03.061.
[25] Yousefi, S.A., Barikbin, Z. (2011). “Ritz Legendre multiwavelet method for the damped generalized regularized long-wave equation”. Journal of Computational and Nonlinear Dynamics, 7(1), doi: https://doi.org/10.1115/1.4004121.
[26] Yousefi, S.A., Lesnic, D., Barikbin, Z. (2012). “Satisfier function in Ritz-Galerkin method for the identification of a time-dependent diffusivity”. Journal of Inverse and Ill-Posed Problems, 20(no.5-6), 701-722, doi: https://doi.org/10.1515/jip-2012-0020.
[27] Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M. (2013). “A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model”. Computers and Mathematics with Applications, 66(5), 693-701, doi: https://doi.org/10.1016/j.camwa.2013.01.031.