In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of electrical engineering‎, ‎Science and Research Branch‎, ‎Islamic Azad University‎, ‎Tehran‎, ‎Iran.

2 Department of Mathematics‎, ‎Payame Noor University‎, ‎‎Iran‎.

10.30473/coam.2025.74268.1300

Abstract

This study analyzes the growth dynamics of melanoma tumor cells and develops a model predictive controller (MPC) using four well-known optimizers to suppress tumor growth, proposing an MPC framework that integrates multiple metaheuristic algorithms for regulating tumor size. All modelling, control design, and simulations are performed in MATLAB, and results indicate that a PSO-based MPC offers satisfactory response and rapid convergence, achieving effective tracking and disturbance rejection. The study assumes precise drug dosing is feasible and demonstrates substantial tumor-size reduction through the integration of MPC with metaheuristic optimization. Simulation findings reveal that the PSO-based MPC achieves notable improvement in tumor reduction and overall control performance, outperforming other metaheuristic approaches, as evidenced by comparative error metrics: ITAE ≈ 1.9377 × 10^3, IAE ≈ 244.45, MSE ≈ 4.6863 × 10^3.

Highlights

  • Proposes a novel Model Predictive Control (MPC) framework that concurrently leverages multiple metaheuristic optimizers (with a standout PSO-based MPC) to regulate tumor size, enabling adaptive and robust therapy planning.
  • Combines a dynamic mathematical model of melanoma growth with recursive least squares parameter estimation and an MPC that is tailored to individual tumor dynamics and drug responses, supporting personalized treatment strategies.
  • Introduces an inter-sample heterogeneity-aware rest period (one day per cycle) determined through a predictive control and optimization loop, highlighting the importance of dosing cadence in optimizing outcomes.
  • Demonstrates that PSO-enhanced MPC outperforms other metaheuristic approaches in tumor size reduction, disturbance rejection, and control quality, as evidenced by metrics such as ITAE, IAE, and MSE.
  • Shows that the integrated MPC framework can maintain tumor control under intrinsic drug resistance and model uncertainties, with substantial tumor reduction while minimizing harm to healthy tissue.
  • All modelling, control design, and simulations are conducted in MATLAB, with explicit reporting of performance metrics and a clear pathway for replication and validation across labs.
  • Provides a structured process for deriving predicted treatment plans, including dosage schedules, that can inform experimental designs and, in the long run, clinical translation.
  • Establishes concrete comparative benchmarks (e.g., ITAE ≈ 1.94×10^3, IAE ≈ 244.5, MSE ≈ 4.69×10^3) to guide subsequent studies aiming to optimize combinatorial control-algorithm strategies in oncologic pharmacology.

Keywords

Main Subjects

[1] Bachmann, F., Koch, G., Pfister, M., Szinnai, G., Schropp, J. (2021). “OptiDose: Computing the individualized optimal drug dosing regimen using optimal control”, Journal of Optimization Theory and Applications, 189, 46-65, doi:https://doi.org/10.1007/s10957-021-01819-w.
[2] Bajzer, Z. Marušić, M., Vuk-Pavlović, S. (1996). “Conceptual frameworks for mathematical modeling of tumor growth dynamics”, Mathematical and Computer Modelling, 23(6), 31-46, doi:https://doi.org/10.1016/0895-7177(96)00018-0.
[3] Batmani, Y., Khaloozadeh, H. (2013). “Optimal drug regimens in cancer chemotherapy: A multiobjective approach”, Computers in Biology and Medicine, 43(12), 2089-2095, doi:https://doi.org/10.1016/j.compbiomed.2013.09.026.
[4] Bernard, A., Kimko, H., Mital, D., Poggesi, I. (2012). “Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development”, Expert Opinion on Drug Metabolism & Toxicology, 8(9), 1057-1069, doi:https://doi.org/10.1517/17425255.2012.693480.
[5] Camacho, E.F., Alba, C.B. (2013). “Model predictive control”, Springer Science & Business Media, doi:https://doi.org/10.1007/978-0-85729-398-5.
[6] Chen, T., Kirkby, N.F., Jena, R. (2012). “Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation”, Computer Methods and Programs in Biomedicine, 108(3), 973-983, doi:https://doi.org/10.1016/j.cmpb.2012.05.011.
[7] Chhetri, B., Bhagat, V.M., Vamsi, D.K., Ananth, V.S., Prakash, B., Muthusamy, S., Deshmukh, P., Sanjeevi, C.B. (2022). “Optimal drug regimen and combined drug therapy and its efficacy in the treatment of COVID-19: A within-host modeling study”, Acta Biotheoretica, 70(2), 16, doi:https://doi.org/10.1007/s10441-022-09440-8.
[8] Claret, L., et al. (2009). “Model-based prediction of phase III overall survival in colorectal cancer on the basis of phase II tumor dynamics”, Journal of Clinical Oncology, 27(25), 4103-4108, doi:https://ascopubs.org/doi/10.1200/jco.2008.21.0807.
[9] Colton Connor, C., Quinton, L., Sweazy, A., McMasters, K., Hao, H. (2025). “Clinical approaches for the management of skin cancer: A review of current progress in diagnosis, treatment, and prognosis for patients with melanoma”, Cancers, 17(4), 707, doi:https://doi.org/10.3390/cancers17040707.
[10] Florian Jr, J.A., Eiseman, J.L., Parker, R.S. (2008). “Nonlinear model predictive control for dosing daily anticancer agents using a novel saturating-rate cell-cycle model”, Computers in Biology and Medicine, 38(3), 339-347, doi:https://doi.org/10.1016/j.ifacol.2017.08.1594.
[11] Frances, N., Claret, L., Bruno, R., Iliadis, A. (2011). “Tumor growth modeling from clinical trials reveals synergistic anticancer effect of the capecitabine and docetaxel combination in metastatic breast cancer”, Cancer Chemotherapy and Pharmacology, 68(6), 1413-1419, doi:https://doi.org/10.1007/s00280-011-1628-6.
[12] Hadjiandreou, M.M., Mitsis, G.D. (2014). “Mathematical modeling of tumor growth, drug-resistance, toxicity, and optimal therapy design”, IEEE Transactions on Biomedical Engineering, 61(2), 415-425, doi:https://doi.org/10.1109/tbme.2013.2280189.
[13] Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L. (1999). “Tumor development under angiogenic signaling: A dynamical theory of tumor growth, treatment response and postvascular dormancy”, Cancer Research, 59(19), 4770-4775.
[14] Housman, G., Byler, Sh., Heerboth, S., Lapinska, K., Longacre, M., Snyder, N., Sarkar, A. (2014). “Drug resistance in cancer: An overview”, Cancers, 6(3), 1769-1792, doi:https://doi.org/10.3390/cancers6031769.
[15] Javadi, A., Keighobadi, F., Nekoukar, V., Ebrahimi, M. (2019). “Finite-set model predictive control of melanoma cancer treatment using signaling pathway inhibitor of cancer stem cell”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18(4), 1504-1511, doi:10.1109/TCBB.2019.2940658.
[16] Khaloozadeh, H., Yazdanbakhsh, P., Homaei-Shandiz, F. (2008). “The optimal dose of drug in neoadjuvant Chemotherapy before surgery for the patients suffering from breast cancer stage III”, Iranian Journal of Biomedical Engineering, 1(4), 319-334, doi:https://doi.org/10.22041/ijbme.2008.13551.
[17] Kovács, L., Szeles, A., Sápi, J., A Drexler, D., Rudas, I., Harmati, I., Sápi, Z. (2014). “Model-based angiogenic inhibition of tumor growth using modern robust control method”, Computer Methods and Programs in Biomedicine, 114(3), 98-110, doi:https://doi.org/10.1016/j.cmpb.2014.01.002.
[18] Laird, A.K. (1964). “Dynamics of tumour growth”, British Journal of Cancer, 18(3), 490-502, https://doi.org/10.1038/bjc.1964.55.
[19] Luos, W., Tan, X., Shen, J. (2023). “Optimal treatment strategy for cancer based on mathematical modeling and impulse control theory”, Axioms, 12(10), 916, doi:https://doi.org/10.3390/axioms12100916.
[20] McCulloch, A.D., Huber, G. (2002). “Integrative biological modelling in silico”, ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposia 247, Volume 247, 4-19, doi: https://doi.org/10.1002/0470857897.ch2.
[21] Michor, F., Beal, K. (2015). “Improving cancer treatment via mathematical modeling: Surmounting the challenges is worth the effort”, Cell, 163(5), 1059-1063, doi:https://doi.org/10.1016/j.cell.2015.11.002.
[22] Moradi, H., Sharifi, M., Vossoughi, G. (2015). “Adaptive robust control of cancer chemotherapy in the presence of parametric uncertainties: A comparison between three hypotheses”, Computers in Biology and Medicine, 56, 145-157, doi:https://doi.org/10.1016/j.compbiomed.2014.11.002.
[23] Nazari Monfared, M., Ahmad Fakharian, A., Menhaj, M.B., Abbasi, R. (2020). “The application of power series expansion to optimal control of an immune oncology nonlinear dynamic problem”, AUT Journal of Modeling and Simulation, 52(1), 117-128, doi:https://doi.org/10.22060/miscj.2020.17884.5198.
[24] Pasqua, O.E.D. (2011). “PKPD and disease modeling: Concepts and applications to oncology”, Kimko, H., Peck, C. (eds) Clinical Trial Simulations. AAPS Advances in the Pharmaceutical Sciences Series, vol 1. Springer, New York, NY, doi:http://dx.doi.org/10.1007/978-1-4419-7415-0_13.
[25] Ribba, B., et al. (2014). “A review of mixed effects models of tumor growth and effects of anticancer drug treatment used in population analysis”, CPT: Pharmacometrics & systems Pharmacology, 3(5), 1-10, doi:https://doi.org/10.1038/psp.2014.12.
[26] Richalet, J., Rault, A., Testud, J., Papon, J. (1978). “Model predictive heuristic control: Applications to industrial processes”, Automatica, 14(5), 413-428, doi:https://doi.org/10.1016/0005-1098(78)90001-8.
[27] Roky, A.H., Murshedul Islam, M., Fuad Ahasan, M., Saqline Mostaq, M., Zihad Mahmud, M., Nurul Amin, M., Ashiq Mahmud, M. (2025). “Overview of skin cancer types and prevalence rates across continent”, Cancer Pathogenesis and Therapy, 3(2), 89-100, doi:https://doi.org/10.1016/j.cpt.2024.08.002.
[28] Sbeity, H, Younes, R. (2015). “Review of optimization methods for cancer chemotherapy treatment planning”, Journal of Computer Science & Systems Biology, 8(2), 74-95, doi:10.4172/jcsb.1000173.
[29] Scagliotti, A., Scagliotti, F., Deborah Locati, L., Sottotetti, F. (2025). “Ensemble optimal control for managing drug resistance in cancer therapies”, Optimization and Control, 22, doi:https://doi.org/10.48550/arXiv.2503.08927.
[30] Takebe, N., Harris, P.J., Warren, R.Q., Ivy, S.P. (2011). “Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways”, Nature Reviews Clinical Oncology, 8(2), 97-106, doi:https://doi.org/10.1038/nrclinonc.2010.196.
[31] Tan, K.C., Khor, E.F., Cai, J., Heng, C., Lee, T.H. (2002). “Automating the drug scheduling of cancer chemotherapy via evolutionary computation”, Artificial Intelligence in Medicine, 25(2), 169- 185, doi:https://doi.org/10.1016/S0933-3657(02)00014-3.
[32] Unal, C., Salamci, M.U. (2017). “Drug administration in cancer treatment via optimal nonlinear state feedback gain matrix design”, IFAC-Papers OnLine, 50(1), 9979-9984, doi:https://doi.org/10.1016/j.ifacol.2017.08.1594.
[33] Wang, Y., et al. (2009). “Elucidation of relationship between tumor size and survival in non – small - cell lung cancer patients can aid early decision making in clinical drug development”, Clinical Pharmacology & Therapeutics, 86(2), 167-174, doi:https://doi.org/10.1038/clpt.2009.64.
[34] Waseh, S.B., Lee, J. (2023). “Advances in melanoma: Epidemiology, diagnosis, and prognosis”, Frontiers in Medicine, 10, doi:https://doi.org/10.3389/fmed.2023.1268479.
[35] Weidner, N. et al. (1992). “Tumor angiogenesis: A new significant and independent prognostic indicator in early stage breast carcinoma”, Journal of the National Cancer Institute, 84(24), 1875-1887, doi:https://doi.org/10.1093/jnci/84.24.1875.
[36] Weng, G., Bhalla, U.S., Iyengar, R. (1999). “Complexity in biological signaling systems”, Science, 284(5411), 92-96, doi:https://doi.org/10.1126/science.284.5411.92.
[37] Westman, J.J., Fabijonas, B.R., Kern, D.L., Hanson, F.B. (2002). “ Probabilistic rate compartment cancer model: Alternate versus traditional chemotherapy scheduling”, Pasik-Duncan, B. (eds), Stochastic Theory and Control. Lecture Notes in Control and Information Sciences, vol 280. Springer, Berlin, Heidelberg, doi:https://doi.org/10.1007/3-540-48022-6_33.
[38] Xiao, Y.G., Wang, W., Gong, D., Mao, Z.F. (2018). “Effects of NOTCH1 signaling inhibitor γ-secretase inhibitor II on growth of cancer stem cells”, Oncology Letters, 94(6), 654, doi:https://doi.org/10.3892/ol.2018.9377.
[39] Yin, Q., Shi, X., Lan, S., Jin, H., Wu, D., Yin, Q., Shi, X., Lan, S. Jin, H., Wu, D. (2021). “Effect of melanoma stem cells on melanoma metastasis (Review)”, Oncology Letters, 22(1), doi:https: //doi.org/10.3892/ol.2021.12827.