In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

‎Department of Industrial Engineering‎, ‎Payame Noor University‎, ‎Iran‎.‎‎

10.30473/coam.2025.74715.1311

Abstract

This paper addresses multi-attribute group decision-making (MAGDM) where linguistic assessments are represented by both positive and negative interval type-2 fuzzy numbers (IT2FNs)‎, ‎capturing the intrinsic uncertainty of group evaluations more accurately. ‎We introduce a novel ranking method for IT2FNs that simultaneously utilizes the mean and standard deviation of the upper and lower membership functions‎, ‎ as well as the IT2FN's height‎. ‎This enhances its discriminatory capability‎. ‎The theoretical foundations of this ranking— encompassing zero‎, ‎unity‎, ‎and symmetry properties— are rigorously established‎, ‎and its superiority over existing techniques is demonstrated through comparative analyses on seven benchmark datasets‎. ‎Building on this ranking‎, ‎we develop an integrated fuzzy MAGDM framework that can handle both positive and negative IT2FN assessments for criteria and weights‎. ‎The framework’s practicality and effectiveness are validated through two case studies‎: ‎one with exclusively positive linguistic terms and another with mixed positive and negative scales‎. ‎Results indicate that the proposed ranking and decision framework yield more rational and robust group decisions under substantial uncertainty‎. ‎They outperform conventional fuzzy methods and offer a nuanced solution for real-world MAGDM scenarios‎.

Highlights

  • Novel ranking method for IT2FNs (positive, negative, and neutral) that jointly uses mean, standard deviation, and height.
  • Enhances MADM/MAGDM with bipolar (positive–negative) linguistic scales and neutral assessments.
  • Integrated MAGDM framework capable of processing dual-scale IT2FN criteria and weights.
  • Demonstrated superiority over state-of-the-art methods via comprehensive benchmark comparisons.
  • Real-world relevance: improved rationality and robustness in complex, uncertainty-rich decision problems.

Keywords

Main Subjects

[1] Abdullah, L., Najib, L. (2014). “A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process”. Expert Systems with Applications, 41, 3297-3305, doi:https://doi.org/10.1016/j.eswa.2013.11.028.
[2] Amiri, N., Nasseri, H., Darvishi Salokolaei, D. (2025). “Multi-objective optimization problem involving max-product fuzzy relation inequalities with application in wireless communication”. Control and Optimization in Applied Mathematics, 10(1), 91-107, doi:https://doi.org/10.30473/coam.2025.72543.1270.
[3] Ayoughi, H., Dehghani Poudeh, H., Raad, A., Talebi, D. (2022). “A hybrid heuristic algorithm to provide a multi-objective fuzzy supply chain model with a passive defense approach”. Control and Optimization in Applied Mathematics, 7(1), 53-78, doi:https://doi.org/10.30473/coam.2022.60472.1173.
[4] Balezentis, T., Zeng, S. (2013). “Group multi-attribute decision making based upon interval-valued fuzzy numbers: An extension of the MULTIMOORA method”. Expert Systems with Applications, 40(2), 543-550, doi:https://doi.org/10.1016/j.eswa.2012.07.066.
[5] Bisht, G., Pal, A.K. (2024). “Three-way decisions based multi-attribute decision-making with utility and loss functions”. European Journal of Operational Research, 316(1), 268-281, doi:https://doi.org/10.1016/j.ejor.2024.01.043.
[6] Biswas, S., Bandyopadhyay, G., Guha, B., Bhattacharjee, M. (2020). “An ensemble approach for portfolio selection in a multi-criteria decision-making framework”. Decision Making: Applications in Management and Engineering, 3(1), 1-20, doi:https://doi.org/10.31181/dmame2003079b.
[7] Celik, E., Aydin, N., Gumus, A.T. (2014). “A multi-attribute customer satisfaction evaluation approach for rail transit network: a real case study for Istanbul, Turkey”. Transportation Policy, 36, 283-293, doi:https://doi.org/10.1016/j.tranpol.2014.09.005.
[8] Celik, E., Bilisik, O.N., Erdogan, M., Gumus, A.T., Baracli, H. (2013). “An integrated novel interval type-2 fuzzy MCDM method to improve customer satisfaction in public transportation for Istanbul”. Transportation Research Part E: Logistics and Transportation Review, 58, 28-51, doi:https://doi.org/10.1016/j.tre.2013.06.006.
[9] Chen, S.M., Chen, J.H. (2009). “Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads”. Expert Systems with Applications, 36(3), 6833-6842, doi:https://doi.org/10.1016/j.eswa.2008.08.015.
[10] Chen, S.M., Chen, S.J. (2007). “Fuzzy risk analysis based on the ranking of generalized trapezoidal fuzzy numbers”. Applied Intelligence, 26(1), 1-11, doi:https://doi.org/10.1007/s10489-006-0003-5.
[11] Chen, S.M., Lee, L.W. (2010). “Fuzzy multiple attributes group decision making based on the ranking values and the arithmetic operations of IT2FSs”. Expert Systems with Applications, 37(1), 824-833, doi:https://doi.org/10.1016/j.eswa.2009.06.094.
[12] Chen, S.-M., Lee, L.-W. (2010). “Fuzzy multiple attributes group decision-making based on the interval type-2  TOPSIS method”. Expert Systems with Applications, 37(4), 2790-2798, doi:https://doi.org/10.1016/j.eswa.2009.09.012.
[13] Chen, S.M., Yang, M.Y., Lee, L.W., Yang, S.W. (2012). “Fuzzy multiple attributes group decision-making based on ranking IT2FSs”. Expert Systems with Applications, 39, 5295-5308, doi:https://doi.org/10.1016/j.eswa.2011.11.008.
[14] Cheng, C.H. (1998). “A new approach for ranking fuzzy numbers by distance method”. Fuzzy Sets and Systems, 95(3), 307-317, doi:https://doi.org/10.1016/S0165-0114(96)00272-2.
[15] Chiao, K.P. (2016). “Ranking IT2FSs using parametric graded mean integration representation”. International Conference on Machine Learning and Cybernetics (ICMLC), 606-611, doi:https://doi.org/10.1109/ICMLC.2016.7872956.
[16] De, A., Kundu, P., Das, S., Kar, S. (2020). “A ranking method based on interval type-2 fuzzy sets for multiple attribute group decision making”. Soft Computing, 24, 131-154, doi:https://doi.org/10.1007/s00500-019-04285-9.
[17] Dursun, M., Karsak, E.E., Karadayi, M.A. (2011). “A fuzzy multi-attribute group decision making framework for evaluating health-care waste disposal alternatives”. Expert Systems with Applications,38(9), 11453-11462, doi:https://doi.org/10.1016/j.eswa.2011.03.019.
[18] Dymova, L., Sevastjanov, P., Tikhonenko, A. (2015). “An interval type-2 fuzzy extension of the TOPSIS method using alpha cuts”. Knowledge-Based Systems, 83, 116–127, doi:https://doi.org/10.1016/j.knosys.2015.03.014.
[19] Ghorabaee, M.K., Amiri, M., Salehi Sadaghiani, J., Hassani Goodarzi, G. (2014). “Multiple attributes group decision-making for supplier selection based on COPRAS method with interval type-2 fuzzy sets”. International Journal of Advanced Manufacturing Technology, 75, 1115-1130, doi:https://doi.org/10.1007/s00170-014-6142-7.
[20] Jin, F., Zhao, Y., Zheng, X., Zhou, L. (2023). “Supplier selection through interval type-2 trapezoidal fuzzy multi-attribute group decision-making method with logarithmic information measures”. Engineering Applications of  Artificial Intelligence, 126, 107006, doi:https://doi.org/10.1016/j.engappai.2023.107006.
[21] Kundu, P., Kar, S., Maiti, M. (2017). “A fuzzy multi-attribute group decision making based on ranking interval type-2 fuzzy variables and an application to transportation mode selection problem”. Soft Computing, 21(11), 3051-3062, doi:https://doi.org/10.1007/s00500-016-2190-2.
[22] Liao, T.W. (2015). “Two interval type-2 fuzzy TOPSIS material selection methods”. Materials & Design, 88, 1088-1099,doi:https://doi.org/10.1016/j.matdes.2015.09.113.
[23] Lin, J., Chen, R. (2019). “A novel group decision-making method under uncertain multiplicative linguistic environment for information system selection”. IEEE Access, 7, 19848-19855, doi:https://doi.org/10.1109/ACCESS.2019.2892239.
[24] Mendel, J.M. (2007). “Computing with words and its equations with fuzzistics”. Information Sciences, 177(4), 988-1006, doi:https://doi.org/10.1016/j.ins.2006.06.008.
[25] Mendel, J.M., John, R.I., Liu, F.L. (2006). “Interval type-2 fuzzy logical systems made simple”. IEEE Transactions on Fuzzy Systems, 14(6), 808-821, doi:https://doi.org/10.1109/TFUZZ.2006.879986.
[26] Mishra, A.R., Chen, S.-M., Rani, P. (2024).“Multi-attribute decision-making based on picture fuzzy distance measure-based relative closeness coefficients and modified combined compromise solution method”. Information Sciences, 664, 120325,doi:https://doi.org/10.1016/j.ins.2024.120325.
[27] Murakami, S., Maeda, S., Imamura, S. (1983). “Fuzzy decision analysis on the development of centralized regional energy control system”. Proceedings of the 1983 IFAC Symposium on Fuzzy Information, Knowledge Representation and Decision Analysis, 363-368, doi:https://doi.org/10.1016/S1474-6670(17)62060-3.
[28] Pei, L., Cheng, F., Guo, S., Chen, A., Jin, F., Zhou, L. (2024). “Trigonometric function-driven interval type-2 trapezoidal fuzzy information measures and their applications to multi-attribute decision-making”. Engineering Applications of Artificial Intelligence, 135, 108694, doi:https://doi.org/10.1016/j.engappai.2024.108694.
[29] Petrovic, I., Kankaras, M. (2020). “A hybridized IT2FS-DEMATEL-AHPTOPSIS multi-criteria decision making approach: Case study of selection and evaluation of criteria for determination of air traffic control radar position”. Decision Making: Applications in Management and Engineering, 3(1), 146-164, doi:https://doi.org/10.31181/dmame2003134p.
[30] Qin, J., Liu, X. (2015). “Multi-attribute group decision making using combined ranking value under interval type-2 fuzzy environment”. Information Sciences, 279, 239-315, doi:https://doi.org/10.1016/j.ins.2014.11.022.
[31] Rani, P., Chen, S.-M., Mishra, A.R. (2024). “Multi-attribute decision-making based on similarity measure between picture fuzzy sets and the MARCOS method”. Information Sciences, 658, 119990, doi:https://doi.org/10.1016/j.ins.2023.119990.
[32] Titkanloo, H.N., Keramati, A., Fekri, R. (2018). “Data aggregation in multi-source assessment model based on evidence theory”. Applied Soft Computing, 69, 443-452, doi:https://doi.org/10.1016/j.asoc.2018.05.001.
[33] Turksen, I.B. (1986). “Interval valued fuzzy sets based on normal forms”. Fuzzy Sets and Systems, 20(2), 191-210, doi:https://doi.org/10.1016/0165-0114(86)90077-1.
[34] Wang, Y.J., Lee, H.S. (2007). “Generalizing TOPSIS for fuzzy multi-attribute group decision-making”. Computers & Mathematics with Applications, 53, 1762-1772, doi:https://doi.org/10.1016/j.camwa.2006.08.037.
[35] Wang, W, Liu, X., Qin, Y. (2012). “Multi-attribute group decision making models under interval type-2 fuzzy environment”. Knowledge-Based Systems, 30, 121-128, doi:https://doi.org/10.1016/j.knosys.2012.01.005.
[36] Wang, Q.P., Wang, X.F., Hu, H.Q. (2008). “A new method for priorities of fuzzy complementary judgment matrix”. Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), Hong Kong, China, 716-719, doi:https://doi.org/10.1109/FUZZY.2008.4630448.
[37] Wei, G.W. (2011). “FIOWHM operator and its application to multiple attribute group decision making”. Expert Systems with Applications, 38, 2984-2989, doi:https://doi.org/10.1016/j.eswa.2010.08.087.
[38] Xu, Z., Qin, J., Liu, L., Martínez, L. (2019). “Sustainable supplier selection based on AHP Sort II in interval type-2 fuzzy environment”. Information Sciences, 483, 273-293, doi:https://doi.org/10.1016/j.ins.2019.01.013.
[39] Yager, R.R. (1978). “Ranking fuzzy subsets over the unit interval”. Proceedings of the 17th IEEE International Conference on Decision and Control, 1435-1437, doi:https://doi.org/10.1109/CDC.1978.268154.
[40] Zadeh, L.A. (1965). “Fuzzy sets”. Information and Control, 8(3), 338-356, doi:https://doi.org/10.1016/S0019-9958(65)90241-X.
[41] Zamri, N., Naim, S., Abdullah, L. (2015). “A new linguistic scale for Interval Type-2 Trapezoidal Fuzzy Number based multiple attribute decision making method”. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), doi:https://doi.org/10.1109/FUZZ-IEEE.2015.7337870.
[42] Zhang, Z., Zhang, S. (2013). “A novel approach to multi-attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets”. Applied Mathematical Modelling, 37, 4948-4971, doi:https://doi.org/10.1016/j.apm.2012.10.006.
[43] Zhao, J., Zhu, H., Li, H. (2019). “2-Dimension linguistic PROMETHEE methods for multiple attribute decision making”. Expert Systems with Applications, 127, 97-108, doi:https://doi.org/10.1016/j.eswa.2019.02.034.
[44] Zhao, S., Dong, Y., Martínez, L., Pedrycz, W. (2022). “Analysis of ranking consistency in linguistic multiple attribute decision making: The roles of granularity and decision rules”. IEEE Transactions on Fuzzy Systems, 30(7), 2266-2278, doi:https://doi.org/10.1109/TFUZZ.2021.3078817.