[1] Abdelkawy, M. A., Izadi, M., Adel, W. (2024). “Robust and accurate numerical framework for multi-dimensional fractional-order telegraph equations using Jacobi/Jacobi-Romanovski spectral technique”. Boundary Value Problems, 2024(1), 131. DOI: https://doi.org/10. 1186/s13661-024-01944-1
[2] Abramowitz, M., Stegun, I.A. (1965). “Handbook of mathematical functions with formulas, graphs, and mathematical tables (National Bureau of Standards Applied Mathematics Series No. 55)”. Journal of Applied Mechanics, 32(1), 239. DOI: https://doi.org/10.1115/ 1.3625776
[3] Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D. (2019). “A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator”. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(8). DOI: https://doi.org/ 10.1063/1.5096159
[4] Baleanu, D., Tajani, A., Zguaid, K., Jajarmi, A. (2025). “Fractional optimal control problems in the sense of Ψ‐Caputo fractional derivative”. Optimal Control Applications and Methods, 46(6), 2867-2881. DOI: https://doi.org/10.1002/oca.70034
[5] Boyd, J.P. (2001). “Chebyshev and Fourier spectral methods”. 2nd Edition. Courier Corporation, Dover.
[6] Brugnano, L., Burrage, K., Burrage, P., Iavernaro, F. (2024). “A spectrally accurate step-by-step method for the numerical solution of fractional differential equations”. Journal of Scientific Computing, 99(2), 48. DOI: https://doi.org/10.1007/ s10915-024-02517-1
[7] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A. (2007). “Spectral methods: Fundamentals in single domains (Scientific Computation)”. Springer Berlin Heidelberg. https: //books.google.com/books?id=DFJB0kiq0CQC
[8] Darehmiraki, M., Farahi, M.H., Effati, S. (2018). “Solution for fractional distributed optimal control problem by hybrid meshless method”. Journal of Vibration and Control, 24(11), 2149-2164. DOI: https://doi.org/10.1177/1077546316678527
[9] Ebrahimzadeh, A., Jajarmi, A., Yavuz, M. (2025). “Fractional optimal control of anthroponotic cutaneous leishmaniasis with behavioral and epidemiological extensions”. Mathematical and Computational Applications, 30(6), 122. DOI: https://doi.org/10.3390/ mca30060122
[10] Jajarmi, A., Akbarian, M., Baleanu, D. (2025). “Analysis and backstepping control of a novel 4D fractional chaotic oscillator”. Mathematical Methods in the Applied Sciences. DOI: https://doi.org/10.1002/mma.11211
[11] Li, C., Zeng, F. (2015). “Numerical methods for fractional calculus (1st ed.)”. Chapman and Hall/CRC. DOI: https://doi.org/10.1201/b18503
[12] Lions, J.L. (1971). “Optimal control of systems governed by partial differential equations”. Springer-Verlag. DOI: https://doi.org/10.1007/978-3-642-65024-6
[13] Mahmoudi, M., Shojaeizadeh, T., Darehmiraki, M. (2023). “Optimal control of time-fractional convection–diffusion–reaction problem employing compact integrated RBF method”. Mathematical Sciences, 17(1), 1-14. DOI: https://doi.org/10.1007/ s40096-021-00434-0
[14] Mohammed Ali, M.M., Mahmoudi, M. and Darehmiraki, M. (2025). “Hybrid RBF method for solving fractional PDE-constrained optimal control problems”. Control and Optimization in Applied Mathematics, 10(2), 213-240. DOI: https://doi.org/10.30473/ coam.2025.73804.1289
[15] Papadopoulos, I.P.A, Olver, S. (2024). “A sparse spectral method for fractional differential equations in one-spatial dimension”. Advances in Computational Mathematics, 50(4), 69. DOI: https://doi.org/10.1007/s10444-024-10164-1
[16] Pirouzeh, Z., Skandari, M.H.N., Pirbazari, K.N., Shateyi, S. (2024). “A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations”. AIMS Mathematics, 9(9), 23692-23710. DOI: https://doi.org/10.3934/math. 20241151
[17] Podlubny, I. (1998). “Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications”. Elsevier Science. https://www.sciencedirect.com/bookseries/ mathematics-in-science-and-engineering/vol/198/suppl/C
[18] Pu, T., Fasondini, M. (2023). “The numerical solution of fractional integral equations via orthogonal polynomials in fractional powers”. Advances in Computational Mathematics, 49(1), 7. DOI: https://doi.org/10.1007/s10444-022-10009-9
[19] Rezazadeh, A., Mahmoudi, M. Darehmiraki, M. (2020). “A solution for fractional PDE constrained optimization problems using reduced basis method”. Computational and Applied Mathematics, 49(1), 82. DOI: https://doi.org/10.1007/s40314-020-1092-1
[20] Sayed, S.M., Mohamed, A.S., El-Dahab, E.A., Youssri, Y.H. (2024). “Alleviated shifted Gegenbauer spectral method for ordinary and fractional differential equations”. Contemporary Mathematics, 1344-1370. DOI: https://doi.org/10.37256/cm.5220244559
[21] Shen, J., Tang, T., Wang, L.L. (2011). “Spectral methods: Algorithms, analysis and applications”. Springer Berlin, Heidelberg. DOI: https://doi.org/10.1007/ 978-3-540-71041-7
[22] Shojaeizadeh, T., Mahmoudi, M., Darehmiraki, M. “Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials”. Chaos, Solitons & Fractals, 143, 110568. DOI: https://doi.org/10.1016/j. chaos.2020.110568
[23] Sweilam, N.H., Al-Ajami, T.M. (2015). “Legendre spectral-collocation method for solving some types of fractional optimal control problems”. Journal of advanced research, 6(3), 393-403. DOI: https://doi.org/10.1016/j.jare.2014.05.004
[24] Szegő, G. (1975). “Orthogonal polynomials”. American Mathematical Society.
[25] Trefethen, L.N. (2000). “Spectral methods in MATLAB”. SIAM. DOI: https://doi. org/10.1137/1.9780898719598
[26] Tröltzsch, F. (2010). “Optimal control of partial differential equations II: Theory, methods and applications”. American Mathematical Society. DOI: https://doi.org/10.1090/gsm/112
[27] Zhang, J., Yang, Y., Zhou, Z. (2023). “Spectral Galerkin approximation of fractional optimal control problems with fractional Laplacian”. Advances in Applied Mathematics and Mechanics, 15(6), 631-1654. DOI: https://doi.org/10.4208/aamm.OA-2022-0173