[1] Deb M. K., Babuska I., Oden J. T. (2001). `` Solution of stochastic partial differential equations using Galerkin finite element techniques ", Computer Methods in Applied Mechanics and Engineering, 190, 6359-6372.
[2] Ghanem R., Spanos P. (1991). ``Stochastic finite elements: a spectral approach", Springer-Verlag, New York.
[3] Karhunen K. (1947). `` Uber lineare methoden in der wahrscheinlichkeitsrechnung ", Annales Academiæ Scientiarum Fennice, 37.
[4] Kunisch K., Vexler B. (2007). `` Constrained Dirichlet boundary control in $L^2$ for a class of evolution equations '', SIAM Journal on Control and Optimization, 46, 1726-1753.
[5] Lagnese J. E., Leugering G. (2000). `` Dynamic domain decomposition in approximate and exact boundary control in problems of transmission for wave equations '', SIAM Journal on Control and Optimization, 38, 503-537.
[6] Lee H. C., Lee J. (2013). `` A stochastic Galerkin method for stochastic control problems ", Communications in Computational Physics, 14, 77-106.
[7] Liu. J. (2001) `` Uncertainty analysis of temperature prediction of biological bodies subject to randomly spatial heating ", Journal of Biomechanics, 34, 1637-1642.
[8] Lo'eve M. (1946). `` Fonctions al'eatoires de second ordre ", Revue des sciences de l'eau, 84, 195-206.
[9] Lord G. J., Powell C. E., Shardlow T. (2014). `` An introduction to computational stochastic PDEs ", Cambridge University Press.
[10] McKinney D., Savitsky A. (2003). `` Basic optimization models for water and energy '', Technical Report: University of Texas management, Austin.
[11] Nulman J., Krusius J. P., Gat A. (1985). `` Rapid thermal processing of thin gate dielectrics-oxidation of silicon '', Electron Device Letters, IEEE, 6, 205-208.
[12] Park H. M., Lee W. J. (2002). `` A new numerical method for the boundary optimal control problems of the heat conduction equation '', International Journal for Numerical Methods in Engineering, 53, 1593-1613.
[13] Park H. M., Yoon Y. T., Kim O. Y. (1999). `` Optimal control of rapid thermal processing systems by empirical reduction of modes '', Industrial and Engineering Chemistry Research, 38, 3964 -3975.
[14] Sepahvand K., Marburg S., Hardtke H. J., (2010). `` Uncertainty quantification in stochastic systems using polynomial chaos expansion ", International Journal of Applied Mechanics, 2, 305-353.
[15] Schwab C., Gittelson C. J. (2011). `` Sparse tensor discretizations of high dimensional parametric and stochastic PDEs '', Acta Numerica, 20, 291-467.
[16] Schwab C., Todor R. A. (2006). `` Karhunen-Lo'eve approximation of random fields by generalized fast multiple methods ", Journal of Computational Physics, 217, 100-122.
[17] Swiler L. P., Paez T. L., Mayes R. L. (2009). `` Epistemic uncertainty quantification tutorial '', In proceedings of the 27-th International Modal Analysis Conference, Orlando, Florida.
[18] Tiesler H., Kirby R. M., Xiu D., Preusser D. (2012). `` Stochastic collocation for optimal control problems with stochastic pde constraints '', SIAM Journal on Control and Optimization, 50, 2659-2682.
[19] Troltzsch F. (2010). `` Optimal control of partial differential equations: theory, methods and applications", American Mathematical Society.
[20] William O. L., Helton J. C., Joslyn C. A., Wojtkiewicz S. F., Ferson S. (2004). `` Challenge problems: uncertainty in system response given uncertain parameters '', Reliability Engineering and System Safety, 85, 11-19.
[21] Xiu D. (2010). `` Numerical methods for stochastic computations: a spectral method approach ", Princeton University Press.
[22] Xiu D., Karniadakis G. E. (2002). `` The Wiener-Askey polynomial chaos for stochastic differential equations ", SIAM journal on scientific computing, 24, 619-644.
[23] Xiu D., Karniadakis G. E. (2002). `` Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos '', Computer Methods in Applied Mechanics and Engineering, 191, 4927-4948.
[24] Xiu D., Karniadakis G. E. (2003). `` A new stochastic approach to transient heat conduction modelling with uncertainty ", International Journal of Heat and Mass Transfer, 46, 4681-4693.
[25] Zhang Y. (2013). `` Efficient uncertainty quantification in aerospace analysis and design '', Ph.D Dissertation, Missouri University of Science and Technology.