In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Applied Article

Authors

1 faculty of mathematical sciences, university of guilan, rasht, iran

2 Faculty of mathematical sciences, University of Guilan, Rasht, Iran

Abstract

‎In the present paper‎, ‎optimal heating of temperature field which is modelled as a boundary optimal control problem‎, ‎is investigated in the uncertain environments and then it is solved numerically‎. ‎In physical modelling‎, ‎a partial differential equation with stochastic input and stochastic parameter are applied as the constraint of the optimal control problem‎. ‎Controls are implemented as Dirichlet boundary conditions and representing the heating elements on the boundary of the field‎. ‎In numerical quantification‎, ‎stochastic input and parameter are approximated via Karhunen-Lo'eve expansion and inserted to the problem‎. ‎In fact‎, ‎for numerical discretization of the problem stochastic Galerkin method is applied to generalize polynomial chaos‎. ‎Numerical optimization is performed via gradient method‎. ‎The problem is fully implemented and in order to show the applicability of the method‎, ‎numerical examples are solved and numerical results are represented through figures.

Keywords

Main Subjects

[1] Deb M‎. ‎K.‎, ‎Babuska I.‎, ‎Oden J‎. ‎T‎. ‎(2001)‎. ‎`` Solution of stochastic partial differential equations using Galerkin finite element techniques‎ ", ‎Computer Methods in Applied Mechanics and Engineering‎, ‎190‎, ‎6359-6372‎.
[2] Ghanem R.‎, ‎Spanos P‎. ‎(1991)‎. ‎``Stochastic finite elements‎: ‎a spectral approach"‎, ‎Springer-Verlag‎, ‎New York‎.
[3] Karhunen K‎. ‎(1947)‎. ‎`` Uber lineare methoden in der wahrscheinlichkeitsrechnung‎ ", ‎Annales Academiæ Scientiarum Fennice‎, ‎37‎.
‎[4] Kunisch K.‎, ‎Vexler B‎. ‎(2007)‎. ‎`` Constrained Dirichlet boundary control in $L^2$ for a class of evolution equations ''‎, ‎SIAM Journal on Control and Optimization‎, ‎46‎, ‎1726-1753‎.
[5] Lagnese J‎. ‎E.‎, ‎Leugering G‎. ‎(2000)‎. ‎`` Dynamic domain decomposition in approximate and exact boundary control in problems of transmission for wave equations ''‎, ‎SIAM Journal on Control and Optimization‎, ‎38‎, ‎503-537‎.
[6] Lee H‎. ‎C.‎, ‎Lee J‎. ‎(2013)‎. ‎`` A stochastic Galerkin method for stochastic control problems‎ ", ‎Communications in Computational Physics‎, ‎14‎, ‎77-106‎.
[7] Liu‎. ‎J‎. ‎(2001) `` Uncertainty analysis of temperature prediction of biological bodies subject to randomly spatial heating‎ ", ‎Journal of Biomechanics‎, ‎34‎, ‎1637-1642‎.
[8] Lo'eve M‎. ‎(1946)‎. ‎`` Fonctions al'eatoires de second ordre‎ ", ‎Revue des sciences de l'eau‎, ‎84‎, ‎195-206‎.
‎[9] Lord G‎. ‎J.‎, ‎Powell C‎. ‎E.‎, ‎Shardlow T‎. ‎(2014)‎. ‎`` An introduction to computational stochastic PDEs‎ ", ‎Cambridge University Press‎.
[10] McKinney D.‎, ‎Savitsky A‎. ‎(2003)‎. ‎`` Basic optimization models for water and energy ''‎, ‎Technical Report‎: ‎University of Texas management‎, ‎Austin‎.
[11] Nulman J.‎, ‎Krusius J‎. ‎P.‎, ‎Gat A‎. ‎(1985)‎. ‎`` Rapid thermal processing of thin gate dielectrics-oxidation of silicon ''‎, ‎Electron Device Letters‎, ‎IEEE‎, ‎6‎, ‎205-208‎.
[12] Park H‎. ‎M.‎, ‎Lee W‎. ‎J‎. ‎(2002)‎. ‎`` A new numerical method for the boundary optimal control problems of the heat conduction equation ''‎, ‎International Journal for Numerical Methods in Engineering‎, ‎53‎, ‎1593-1613‎.
[13] Park H‎. ‎M.‎, ‎Yoon Y‎. ‎T.‎, ‎Kim O‎. ‎Y‎. ‎(1999)‎. ‎`` Optimal control of rapid thermal processing systems by empirical reduction of modes ''‎, ‎Industrial and Engineering Chemistry Research‎, ‎38‎, ‎3964‎ -3975.
[14] Sepahvand K.‎, ‎Marburg S.‎, ‎Hardtke H‎. ‎J.‎, ‎(2010)‎. ‎`` Uncertainty quantification in stochastic systems using polynomial chaos expansion‎ ", ‎International Journal of Applied Mechanics‎, ‎2‎, ‎305-353‎.
[15] Schwab C.‎, ‎Gittelson C‎. ‎J‎. ‎(2011)‎. ‎`` Sparse tensor discretizations of high dimensional parametric and stochastic PDEs ''‎, ‎Acta Numerica‎, ‎20‎, ‎291-467‎.
[16] Schwab C.‎, ‎Todor R‎. ‎A‎. ‎(2006)‎. ‎`` Karhunen-Lo'eve approximation of random fields by generalized fast multiple methods‎ ", ‎Journal of Computational Physics‎, ‎217‎, ‎100-122‎.
[17] Swiler L‎. ‎P.‎, ‎Paez T‎. ‎L.‎, ‎Mayes R‎. ‎L‎. ‎(2009)‎. ‎`` Epistemic uncertainty quantification tutorial ''‎, ‎In proceedings of the 27-th International Modal Analysis Conference‎, ‎Orlando‎, ‎Florida‎.
[18] Tiesler H.‎, ‎Kirby R‎. ‎M.‎, ‎Xiu D.‎, ‎Preusser D‎. ‎(2012)‎. ‎`` Stochastic collocation for optimal control problems with stochastic pde constraints ''‎, ‎SIAM Journal on Control and Optimization‎, ‎50‎, ‎2659-2682‎.
[19] Troltzsch F‎. ‎(2010)‎. ‎`` Optimal control of partial differential equations‎: ‎theory‎, ‎methods and applications"‎, ‎American Mathematical Society‎.
[20] William O‎. ‎L.‎, ‎Helton J‎. ‎C.‎, ‎Joslyn C‎. ‎A.‎, ‎Wojtkiewicz S‎. ‎F.‎, ‎Ferson S‎. ‎(2004)‎. ‎`` Challenge problems‎: ‎uncertainty in system response given uncertain parameters ''‎, ‎Reliability Engineering and System Safety‎, ‎85‎, ‎11-19‎.
[21] Xiu D‎. ‎(2010)‎. ‎`` Numerical methods for stochastic computations‎: ‎a spectral method approach‎ ", ‎Princeton University Press‎.
[22] Xiu D.‎, ‎Karniadakis G‎. ‎E‎. ‎(2002)‎. ‎`` The Wiener-Askey polynomial chaos for stochastic differential equations‎ ", ‎SIAM journal on scientific computing‎, ‎24‎, ‎619-644‎.
‎[23] Xiu D.‎, ‎Karniadakis G‎. ‎E‎. ‎(2002)‎. ‎`` Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos ''‎, ‎Computer Methods in Applied Mechanics and Engineering‎, ‎191‎, ‎4927-4948‎.
‎[24] Xiu D.‎, ‎Karniadakis G‎. ‎E‎. ‎(2003)‎. ‎`` A new stochastic approach to transient heat conduction modelling with uncertainty‎ ", ‎International Journal of Heat and Mass Transfer‎, ‎46‎, ‎4681-4693‎.
[25] Zhang Y‎. ‎(2013)‎. ‎`` Efficient uncertainty quantification in aerospace analysis and design ''‎, ‎Ph.D Dissertation‎, ‎Missouri University of Science and Technology‎.