In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Mathematics‎, ‎Payame Noor University, P.O‎. ‎Box‎, ‎19395-3697‎, ‎Tehran‎, ‎Iran.

2 Department of Mathematics, Yazd branch, Islamic Azad University, Yazd, Iran

Abstract

In this paper‎, ‎we introduce and study some new single-valued gap functions for non-differentiable semi-infinite multiobjective optimization problems with locally Lipschitz data‎. ‎Since one of the fundamental properties of gap function for optimization problems is its abilities in characterizing the solutions of the problem in question‎, ‎then the essential properties of the newly introduced gap functions are established‎. ‎All results are given in terms of the Clarke subdifferential.

Keywords

 [1] L. Altangerel, R.I. Bot, G. Wanka, Conjugate duality in vector optimization and some applications to the vector variational inequality, Journal of Mathematical Analysis and Applications 329 (2007) 1010-1035.
[2] G. Caristi, N. Kanzi, Karush-Kuhn-Tuker Type Conditions for Optimality of NonSmooth Multiobjective Semi-Infinite Programming, International Journal of Mathematical Analysis 9 (2015) 1929-1938.
[3] G. Caristi, N. Kanzi, M., Soleymani-Damaneh, On gap functions for nonsmooth multiobjective optimization problems, Optim. Lett. 12 (2018) 273-286.
[4] C.Y. Chen, C.J. Goh, X.Q. Yang, The gap function of a convex multicriteria optimization problem, European Journal of Operational Research 111 (1998) 142-151.
[5] T.D. Chuong, D.S. Kim, Nonsmooth semi-infinite multiobjective optimization problems, Journal of Optimization; Theory and Applications 160 (2014) 748-762.
[6] F.H. Clarke, Optimization and nonsmooth analysis. Wiley, Interscience (1983).
[7] D.W. Hearn, The gap function of a convex program, Operations Research Letters 1 (1982) 67-71.
[8] N. Kanzi, Necessary and Suffcient Conditions for (Weakly) Effcient of NonDifferentiable Multi-Objective Semi-Infinite Programming Problems, Iran J. Sci. Technol. Trans. Sci. 42 (2018) 1537-1544.
[9] N. Kanzi, Karush-Kuhn-Tucker Types Optimality Conditions for Non-Smooth Semi-Infinite Vector Optimization Problems, J. Mathematical Extension 9 (2015) 45-56.
[10] N. Kanzi, M. Soleyman-damaneh, Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems, J. Math.Anal.Appl. 434 (2016) 638-651.
[11] N. Kanzi, J. Shaker Ardekani, G. Caristi, Optimality, scalarization and duality in linear vector semi-infinite programming, Optimization. 67 (2018) 523-536.
[12] G. Mastroeni, Gap functions for equilibrium problems, J. Glob. Optim. 27 (2003) 411–426.
[13] H. Mirzaee, M. Soleimani-damaneh, Optimality, duality and gap function for quasi variational inequality problems, ESAIM Control Optim. Calc. Var. 23 (2017) 297–308.
[14] M. Soleimani-damaneh, The gap function for optimization problems in Banach spaces, Nonlinear Analysis 69 (2008) 716-723.