In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Mathematics and Applications‎, ‎Faculty of Sciences‎, ‎University of Mohaghegh Ardabili‎, ‎P.O‎. ‎Box‎. ‎11367-56199‎, ‎Ardabil‎, ‎Iran.

2 Department of Mathematics and Applications‎, ‎Faculty of Sciences‎, ‎\ University of Mohaghegh Ardabili‎, ‎P.O‎. ‎Box‎. ‎11367-56199‎, ‎Ardabil‎, ‎Iran.

3 Department of Pure Mathematics‎, ‎Ferdowsi University of Mashhad, P.O.Box 1159-91775‎, ‎Mashhad‎, ‎Iran‎.

Abstract

A shearlet frame approach is used to solve $n$-dimensional wave equations numerically‎. ‎By the presented procedure‎, ‎the shearlet coefficients are obtained via separate time-independent partial differential equations‎. ‎The proposed method has the advantage of separation of spatial and temporal parameters‎. ‎The issues of convergence and best approximation are also discussed.

Keywords

[1] Amin Khah M., Askari Hemmat A., Raisi Tousi A. 2016. “ Integral representation for solutions of the wave equation by shearlets ”, Optik, 127 (22), 10554-10560.
[2] Amin Khah M., Raisi Tousi R. 2020. “ Numerical solutions of the wave equation using time-independent shearlet coeffcients ”, Optik, 165914.
[3] Borhanifar A., Sadri K. 2016. “ A generalized operational method for solving integro–partial differential equations based on Jacobi polynomials ”, Hacettepe Journal of Mathematics and Statistics, 45 (2), 311-335.
[4] Casazza P. G. 1998. “Every frame is a sum of three (but not two) orthonormal bases and other frame representations ”, Journal of Fourier Analysis and Applications, 4 (6), 727-732.
[5] Christensen O. 2008. “ Frames and bases: An introductory course ”, Springer Science & Business Media.
[6] Folland G. B. 1995. “ A Course in Abstract Harmonic Analysis ”, CRC Press.
[7] Fornberg B. 1996. “ A Practical Guide to Pseudospectral Methods ”, Cambridge University Press, Cambridge, UK.
[8] Guo K., Labate D. 2013. “ The construction of smooth Parseval frames of shearlets ”, Mathematical Modelling of Natural Phenomena, 8 (1), 82-105.
[9] Kaiser G. 1994. “ A Friendly Guide to Wavelets ”, Boston: Birkhauser.
[10] Kargar Z., Saeedi H. 2017. “ B-spline wavelet operational method for numerical solution of time-space fractional partial differential equations ”, International Journal of Wavelets, Multiresolution and Information Processing, 15, 1750034.
[11] Liew K. M., Cheng R.J. 2013. “ Numerical study of the three-dimensional wave equation using the mesh-free KP-Ritz method”, Engineering Analysis with Boundary Elements, 37(7-8), 977-989.
[12] Kreyszig E. 1978. “Introductory functional analysis with applications”, (1) New York, Wiley.
[13] Kutyniok G., Labate D. 2012. “ Shearlets: Multiscale analysis for multivariate data ”, Springer Science & Business Media, 330.
[14] Kutyniok G., Lemvig J., Lim W. Q. 2012. “ Optimally sparse approximations of 3D functions by compactly supported shearlet frames ”, SIAM Journal on Mathematical Analysis, 44 (4), 2962-3017.
[15] Morton K. W. , Mayers D. F. 2005. “ Numerical Solution of Partial Differential Equations”, An Introduction. Cambridge University Press.
[16] Smith G. D. 1985. “ Numerical Solution of Partial Differential Equations Finite Difference Methods ”, Third ed., Oxford, Oxford University Press.
[17] Sun B.I.N.G., Ma J., Chauris H., Yang H. 2009. “Solving wave equations in the curvelet
domain: A multi-scale and multi-directional approach ”, Journal of Seismic Exploration, 18 (4), 385-399.
[18] Teukolsky WH., Vetterling SA., Flannery WT. 2007. “Spectral Methods, Numerical Recipes: The Art of Scientific Computing ”, Section 20.7. (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8 BP.
[19] Zienkiewicz O. C., Taylor R. L., Zhu J. Z. 2013. “ The Finite Element Method: Its Basis and Fundamentals ”, Butterworth-Heinemann. ISBN 978-0-08-095135-5.