In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Author

Department of Mathematics‎, ‎Payame Noor University, ‎P.O‎. ‎Box‎. ‎19395-3697‎, ‎Tehran‎, ‎Iran‎

Abstract

In this paper‎, ‎we study nonsmooth optimization problems with quasiconvex functions using topological subdifferential‎. ‎We present some necessary and sufficient optimality conditions and characterize topological pseudoconvex functions‎. ‎Finally‎, ‎the Mond-Weir type weak and strong duality results are stated for the problems.

Keywords

[1] Caristi G., Kanzi N. 2015. “Karush-Kuhn-Tuker type conditions for optimality of non-smooth multi-objective semi-infinite programming”, International Journal of Mathematical Analysis 9: 1929-1938.
[2] Giorgi G., Guerraggio A., Thierselder J. 2004.“Mathematics of Optimization; Smooth and Non-smooth cases”, Elsivier.
[3] Hassani Bafrani A., Sadeghieh A. 2018.“Quasi-gap and gap functions for non-smooth multiobjective semi-infinite optimization problems”, Control and Optimization in Applied Mathematics. 3, 1-12.
[4] Kanzi N. 2018. “Necessary and suffcient conditions for (weakly) effcient of nondifferentiable multi-objective semi-infinite programming”, Iranian Journal of Science and Technology, 3, 1537-1544.
[5] Kanzi N., Sadeghieh A., Caristi G. 2019. “Optimality conditions for semi-infinite programming problems involving generalized convexity”, Optimization Letters, 13, 113-126.
[6] Kanzi N., Soleymani-damaneh M. 2015. “Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems”, Journal of Mathematical Analysis and Applications, 434: 638-651.
[7] Kanzi N., Soleymani-damaneh M. 2020. “Characterization of the weakly efficient solutions in nonsmooth quasiconvex multiobjective optimization”, Journal of Global Optimization, 77: 627–641.
[8] Mond B., Weir T. 1981. “Generalized concavity and duality”, In, Schaible. S., Ziemba, W.T. (eds). Generallized concavity in Optimization and Economics, 263-279.
[9] Penot J. P. 2000. “What is quasiconvex analysis?”, Optimization 47: 35-110.
[10] Penot J. P. 1998. “Are generalized derivatives useful for generalized convex functions?”, in Generalized Convexity, Generalized Monotonicity: Recent Results, J.-P. Crouzeix, J. E. Martinez-Legaz, and M. Volle, (eds.), Kluwer, Dordrecht. 3-59.
[11] Penot J. P., Zälinescu C. 2000. “Elements of Quasiconûex Subdifferential Calculus”, Journal of Convex Analysis 7: 243–269.
[12] Rockafellar R. T. 1970. “Convex Analysis”, Princeton University Press, Princeton, NJ.