In collaboration with Payame Noor University and the Iranian Society of Instrumentation and Control Engineers

Document Type : Research Article

Authors

1 Department of Mathematics‎, ‎Payame Noor University (PNU)‎, ‎Tehran‎, ‎Iran.

2 Faculty of Mathematical Sciences‎, ‎University of Tabriz‎, ‎Tabriz‎, ‎Iran‎.

10.30473/coam.2023.65079.1211

Abstract

In this paper‎, ‎we use a graphical algorithm to control and synchronization of a chaotic system‎. ‎Most of the controllers designed for synchronizing chaotic systems are complex‎, ‎but the controllers designed using contraction and graphical methods are often simple and linear‎. ‎Therefore‎, ‎we explain the relationship between contraction analysis and the graphical method for controlling and synchronizing chaotic systems‎. ‎We apply this approach to control and synchronize the chaotic Genesio-Tesi system‎. ‎The stability of the error system in synchronization is investigated using the contraction method‎. ‎Finally‎, ‎we provide numerical simulations to demonstrate the effectiveness of the proposed method‎.

Keywords

[1] Boutayeb, M., Darouach, M., Rafaralahy, H. (2002). “Generalized state-space observers for chaotic synchronization with applications to secure communication”, IEEE Transactions on Circuits and Systems I, 49(3), 345-349.
[2] Femat, R., Jauregui-Ortiz, R., Solys-Perales, G. (2001). “A chaos-based communication scheme via robust asymptotic feedback”, IEEE Transactions on Circuits and Systems, 48(10), 1161-1169.
[3] Femat, R., Alvarez, J., Castillo-Toledo, B., Gonzalez, J. (1999). “On robust chaos suppression in a class of no driven oscillators: Application to the Chua’s circuit”, IEEE Transactions on Circuits and Systems, 46, 1150-1152.
[4] Genesio, R., Tesi, A.A. (1992). “Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems”, Automatica, 28, 531-548.
[5] Godsil, C., Royle, G. (2001). “Algebraic graph theory”, Springer Verlag, New York.
[6] Granas A., Dugundji J. (2003). “Fixed point theory”, Springer-Verlag, New York.
[7] Grassi, G., Mascolo, S. (1997). “Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal”, IEEE Transactions on Circuits and Systems I, 44(10), 11-14.
[8] Hartman, P. (1961). “On stability in the large for systems of ordinary differential equations”, Canadian Journal of Mathematics, 13, 480-492.
[9] Hu, J., Chen, S., Chen, L. (2005). “Adaptive control for anti-synchronization of Chua’s chaotic system”, Physics Letters A, 339, 455-460.
[10] Jackson, E.A., Hubler, A. (1990). “Periodic entrainment of chaotic logistic map dynamics”, Physica D, 44, 404-409.
[11] Joshi, S.K. (2021). “Synchronization of chaotic dynamical systems”, International Journal of Dynamics and Control, 9, 1285-1302.
[12] Jouffroy, J., Slotine, J.J.E. (2004). “Methodological remarks on contraction theory”, In: Proceedings of the 43rd IEEE conference on decision and control at Atlantis, Bahamas, 2537-2543.
[13] Kapitaniak, T. (1996). “Controlling chaos: Theoretical and practical methods in non-linear dynamics”, Academic, New York.
[14] Kapitaniak, T. (2000). “Chaos for engineers: Theory, applications and control”, 2nd Editions, Springer, New York.
[15] Lewis, D.C. (1949). “Metric properties of differential equations”, American Journal of Mathematics, 71, 294-312.
[16] Li, D., Lu, JA., Wu, X. (2005). “Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems”, Chaos, Solitons & Fractals, 23, 79-85.
[17] Liao, T.L., Huang, NS. (1999). “An observer based approach for chaotic synchronization and secure communication”, IEEE Transactions on Circuits and Systems I, 46(9), 1144-1149.
[18] Lohmiller, W. (1999). “Contraction analysis of nonlinear systems”, Ph.D. Thesis, Department of Mechanical Engineering, MIT.
[19] Lohmiller W., Slotine J. J. E. (1998). “On contraction analysis for nonlinear systems”, Automatica, 34, 683-696.
[20] Lohmiller, W., Slotine, J. J. E. (2000). “Control system design for mechanical systems using contraction theory”, IEEE Transaction on Automatic Control, 45(5), 884-889.
[21] Lorenz, E. (1963). “Deterministic non periodic flow”, Atmospheric Sciences, 20, 130-141.
[22] Lu, L., Zhang, F., Zou, C. (2021). “Finite-time synchronization in the laser network based on sliding mode control technology”, Optik, 225, 165605.
[23] Njougouo, T., Camargo, V., Louodop, P., Ferreira, F.F., Talla, P. K., Cerdeira H.A. (2022).
“Synchronization in a multilevel network using the Hamilton–Jacobi–Bellman (HJB) technique”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 32, 093133, 1-14.
[24] Ogorzalek, M.J. (1993). “Taming chaos: Part II – Control scheme via robust asymptotic feedback”, IEEE Transactions on Circuits and Systems I, 40(10), 700-706.
[25] Ott, E., Grebogi, C., York, J.A. (1990). “Controlling chaos”, Physical Review Letters, 64(11), 1196-1199.
[26] Pecoram L.M., Carroll, TL. (1990). “Synchronization in chaotic systems”, Physical Review Letters, 64, 821-824.
[27] Pham, Q.C., Slotine, J.J.E. (2007). “Stable concurrent synchronization in dynamic system networks”, Neural Networks, 20, 62-77.
[28] Russo, G. (2010). “Analysis, control and synchronization of nonlinear systems and networks via contraction theory: theory and applications”, Ph.D. Thesis, Department of Systems and Computer Engineering University of Naples Federico II, Napoli, Italy.
[29] Russo, G., di Bernardo, M. (2009). “An algorithm for the construction of synthetic self-synchronizing biological circuits”, In International Symposium on Circuits and Systems, 305-308.
[30] Russo, G., di Bernardo, M. (2009). “How to synchronize biological clocks”, Journal of Computational Biology, 16, 379-393.
[31] Russo, G., di Bernardo, M. (2009). “Solving the rendezvous problem for multi-agent systems using contraction theory”, in Proceeding International Conference on Decision and Control, 5821-5826.
[32] Russo, G., di Bernardo, M., Slotine, J.J.E. (2009). “An algorithm to prove contraction, consensus, and network synchronization”, In Proceedings of the International Workshop NecSys.
[33] Russo, G., di Bernardo, M., Slotine, J.J.E. (2011). “A graphical algorithm to prove contraction of nonlinear circuits and systems”, IEEE Transactions on Circuits and Systems I, 58(2), 336-348.
[34] Sharma, B.B., Kar, I.N. (2009). “Contraction theory based adaptive synchronization of chaotic systems”, Chaos, Solitons & Fractals, 41, 2437-2447.
[35] Slotine, J.J.E., Li, W. (1990). “Applied Nonlinear Control”, Englewood Cliffs, NJ: Prentice-Hall.
[36] Tarammim, A., Akter, M.T. (2022). “A comparative study of synchronization methods of rucklidge Chaotic Systems with Design of Active Control and backstepping methods”, International Journal of Modern Nonlinear Theory and Application, 11(2), 31-51.
[37] Tsukamoto, H., Chung, S.J., Slotine, J.J.E. (2021). “Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview”, Nonlinear Analysis, Annual Reviews in Control, 52, 135-169.
[38] Wang, W., Slotine, J.J.E. (2005). “On partial contraction analysis for coupled nonlinear oscillators”, Biological Cybernetics, 92, 38-53.
[39] Wang, Y., Guan, Z.H., Wang, H.O. (2003). “Feedback and adaptive control for the synchronization of Chen system via a single variable”, Phys. Lett. A., 312, 34-40.
[40] Yassen, M.T. (2005). “Controlling chaos and synchronization for new chaotic system using linear feedback control”, Chaos, Solitons & Fractals, 26, 913-920.
[41] Zhang, M., Zang, H., Bai, L. (2022). “A new predefined-time sliding mode control scheme for synchronizing chaotic systems”, Chaos, Solitons & Fractals, 164, 112745.