Solving System of Nonlinear Equations by using a New Three-Step Method

Document Type: بنیادی - نظری

Authors

1 Department of Mathematics, Malayer University, Malayer, Iran.

2 Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran.

Abstract

In this paper‎, ‎we suggest a fifth order convergence three-step method for solving system of nonlinear equations‎. ‎Each iteration of the method requires two function evaluations‎, ‎two first Fr'{e}chet derivative evaluations and two matrix inversions‎. ‎Hence‎, ‎the efficiency index is $5^{1/({2n+4n^{2}+\frac{4}{3}n^{3}})}$‎, ‎which is better than that of other three-step methods‎. ‎The advantages of the method lie in the feature that this technique not only achieves an approximate solution with high accuracy‎, ‎but also improves the calculation speed‎. ‎Also‎, ‎under several mild conditions the convergence analysis of the proposed method is provided‎. ‎An efficient error estimation is presented for the approximate solution‎. ‎Numerical examples are included to demonstrate the validity and applicability of the method and the comparisons are made with the existing results.

Keywords

Main Subjects


[1] ‎Babajee D‎. ‎K‎. ‎R.‎, ‎Dauhoo M‎. ‎Z.‎, ‎Darvishi M‎. ‎T.‎, ‎Barati A‎. ‎(2008)‎. ‎``A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule"‎, ‎Applied Mathematics and Computation‎, ‎200‎, ‎(1)‎, ‎452-458‎.

[2] ‎Cordero A.‎, ‎Hueso J‎. ‎L.‎, ‎Mart'inez E.‎, ‎Torregrosa J‎. ‎R‎. ‎(2010)‎. ‎``A modified Newton-Jarratt's composition"‎, ‎Numerical Algorithms‎, ‎55‎, ‎87-99‎.

[3] ‎Cordero A.‎, ‎Hueso J‎ . ‎L.‎, ‎Mart'inez E.‎, ‎Torregrosa J‎. ‎R‎. ‎(2012)‎. ‎``Increasing the convergence order of an iterative method for nonlinear systems"‎, ‎Applied Mathematics Letters‎, ‎25‎, ‎2369-2374‎.

[4] ‎Cordero A.‎, ‎Torregrosa J‎. ‎R‎. ‎(2007)‎. ‎``Variants of Newton method using fifth-order quadrature formulas"‎, ‎Applied Mathematics and Computation‎, ‎190‎, ‎686-698‎.

[5] ‎Darvishi M‎. ‎T.‎, ‎Barati A‎. ‎(2007)‎. ‎``A fourth-order method from quadrature formulae to solve systems of nonlinear equations"‎, ‎Applied Mathematics and Computation‎, ‎188‎, ‎257-261‎.

[6] ‎Grau-S'anchez M.‎, ‎Grau `A.‎, ‎Noguera M‎. ‎(2011)‎. ‎``Ostrowski type methods for solving systems of nonlinear equations"‎, ‎Applied Mathematics and Computation‎, ‎218‎, ‎2377-2385‎.

[7] ‎Homeier H‎. ‎H‎. ‎H‎. ‎(2004)‎. ‎``A modified Newton method with cubic convergence‎: ‎The multivariable case"‎, ‎Journal of Computational and Applied Mathematics‎, ‎169‎, ‎161-169‎.

[8] ‎Kelley C‎. ‎T‎. ‎(2003)‎. ‎``Solving nonlinear equations with Newton's method"‎, ‎SIAM‎, ‎Philadelphia‎.

‎[9] ‎Nedzhibov G‎. ‎H‎. ‎(2008)‎. ‎``A family of multi-point iterative methods for solving systems of nonlinear equations"‎, ‎Journal of Computational and Applied Mathematics‎, ‎222‎, ‎(2)‎, ‎244-250‎.

[10] ‎Rheinboldt W‎. ‎C‎. ‎(1998)‎. ‎``Methods for solving systems of nonlinear equations"‎, ‎SIAM‎, ‎Philadelphia‎.

[11] ‎Sauer T‎. ‎(2012)‎. ‎``Numerical analysis"‎, ‎2nd Edition‎, ‎Pearson‎.

‎[12] ‎Semenov V‎. ‎S‎. ‎(2007)‎. ‎``The method of determining all real nonmultiple roots of systems of nonlinear equations"‎, ‎Computational Mathematics and Mathematical Physics‎, ‎47‎, ‎1428-1434‎.

[13] ‎Soleymani F.‎, ‎Lotfi T.‎, ‎Bakhtiari P‎. ‎(2014)‎. ‎``A multi-step class of iterative methods for nonlinear systems"‎, ‎Optimization Letters‎, ‎8‎, ‎1001-1015‎.

[14] ‎Wang X.‎, ‎Kou J.‎, ‎Li Y‎. ‎(2009)‎. ‎``Modified Jarratt's method with sixth-order convergence"‎, ‎Applied Mathematics Letters‎, ‎22‎, ‎1798-1802‎.

[15] Weerakoon S.‎, ‎Fernando T‎. ‎G‎. ‎I‎. ‎(2000)‎. ‎``A variant of Newton's method with accelerated third-order convergence"‎, ‎Applied Mathematics Letters‎, ‎13‎, ‎(8)‎, ‎87-93‎.