Haar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems

Document Type: بنیادی - نظری


Department of Applied Mathematics, Payame Noor University, Tehran, 193953697, Iran


‎In this paper‎, ‎Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems‎. ‎Firstly‎, ‎using necessary conditions for optimality‎, ‎the problem is changed into a two-boundary value problem (TBVP)‎. ‎Next‎, ‎Haar wavelets are applied for converting the TBVP‎, ‎as a system of differential equations‎, ‎in to a system of matrix algebraic equations‎, ‎as Haar matrix equations using Kronecker product‎. ‎Then the error analysis of the proposed method is presented‎. ‎Some numerical examples are given to demonstrate the efficiency of the method‎. ‎The solutions converge as the number of approximate terms increase.


Main Subjects


‎Betts J.T‎. ‎(2010)‎. ‎``Practical Methods for Optimal Control and Estimation Using Nonlinear‎

‎Programming"‎, ‎Society for Industrial and Applied Mathematics‎.


‎Kirk D.E‎. ‎(2004)‎. ‎``Optimal Control Theory‎: ‎An Introduction"‎, ‎Dover Publications‎.


‎Srinivasan B.‎, ‎Palanki S.‎, ‎Bonvin D‎. ‎(2003)‎. ‎``Dynamic optimization of batch processes‎:

‎I‎. ‎characterization of the nominal solution''‎, ‎Computers Chemical Engineering‎,

‎27‎, ‎1‎, ‎1-26‎.


‎Binder T.‎, ‎Blank L.‎, ‎Dahmen W.‎, ‎Marquardt W‎. ‎(2001)‎. ‎``Iterative algorithms for multiscale‎

‎state estimation"‎, ‎part 1‎: ‎Concepts‎, ‎Journal of Optimization Theory and‎

‎Applications‎, ‎111‎, ‎3‎, ‎501--527‎.


‎Schlegel M.‎, ‎Stockmann K.‎, ‎Binder T.‎, ‎Marquardt W‎. ‎(2005)‎. ‎``Dynamic optimization‎

‎using adaptive control vector parameterization"‎, ‎Computers Chemical Engineering‎,

‎29‎, ‎8‎, ‎1731--1751‎.


‎CHEN W.L.‎, ‎SHIH Y.P‎. ‎(1978)‎. ‎``Analysis and optimal control of time-varying linear‎

‎systems via walsh functions"‎, ‎International Journal of Control‎, ‎27‎, ‎6‎,



‎Wang X.T‎. ‎(2007)‎. ‎``Numerical solutions of optimal control for time delay systems‎

‎by hybrid of block-pulse functions and legendre polynomials"‎, ‎Applied Mathematics‎

‎and Computation‎, ‎184‎, ‎2‎, ‎849--856‎.


‎Hsiao C.H‎. ‎(2004)‎. ‎``Haar wavelet direct method for solving variational problems"‎,

‎Mathematics and Computers in Simulation‎, ‎64‎, ‎5‎, ‎569--585‎.


‎El-Kady M‎. ‎(2012)‎. ‎``Efficient reconstructed legendre algorithm for solving linearquadratic‎

‎optimal control problems"‎, ‎Applied Mathematics Letters‎, ‎25‎, ‎7‎,



‎Kafash B.‎, ‎Delavarkhalafi A.‎, ‎Karbassi S.M‎. ‎(2012)‎. ‎``Application of chebyshev polynomials to derive efficient algorithms for the‎

‎solution of optimal control problems"‎, ‎Scientia Iranica‎, ‎19‎, ‎3‎, ‎795-‎- ‎805‎.


‎Kosmol P.‎, ‎Pavon M‎. ‎(2001)‎. ‎``Solving optimal control problems by means of general‎

‎lagrange functionals"‎, ‎Automatica‎, ‎37‎, ‎6‎, ‎907--913‎.


‎Razzaghi M.‎, ‎Tahai A.‎, ‎Arabshahi A‎. ‎(1989)‎. ‎``Solution of linear two-point boundary‎

‎value problems via fourier series and application to optimal control of linear‎

‎systems"‎, ‎Journal of the Franklin Institute‎, ‎326‎, ‎4‎, ‎523--533‎.


‎Aziz I.‎, ‎ul Islam S.‎, ‎Khan F‎. ‎(2014)‎. ‎``A new method based on haar wavelet for the‎

‎numerical solution of two-dimensional nonlinear integral equations"‎, ‎Journal‎

‎of Computational and Applied Mathematics‎, ‎272‎, ‎0‎, ‎70--80‎.


‎Kaur H.‎, ‎Mittal R.‎, ‎Mishra V‎. ‎(2014)‎. ‎``Haar wavelet solutions of nonlinear oscillator‎

‎equations"‎, ‎Applied Mathematical Modelling‎.


‎Hsiao C.H.‎, ‎Wang W.J‎. ‎(1998)‎. ‎``State analysis and optimal control of linear timevarying‎

‎systems via haar wavelets"‎, ‎Optimal Control Applications and Methods‎,

‎19‎, ‎6‎, ‎423--433‎.


‎Dai R.‎, ‎Cochran J.E.‎, ‎(2009)‎. ‎``Wavelet collocation method for optimal control problems"‎,

‎Journal of Optimization Theory and Applications‎, ‎143‎, ‎2‎, ‎265--278‎.


‎Chui C‎. ‎(1992)‎. ‎``An Introduction to Wavelets"‎, ‎Academic Press‎.


‎Babolian E.‎, ‎Shahsavaran A‎. ‎(2009)‎. ‎``Numerical solution of nonlinear fredholm integral‎

‎equations of the second kind using haar wavelets"‎, ‎Journal of Computational‎

‎and Applied Mathematics‎, ‎225‎, ‎1‎, ‎87--95‎.